diff --git a/.gitignore b/.gitignore index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..936da7d381bbd9221798fb2a16d3eaff43821ca9 100644 --- a/.gitignore +++ b/.gitignore @@ -0,0 +1 @@ +*.pth diff --git a/app/api/routes.py b/app/api/routes.py index b0b0429aedf5d4e24b9795d1bfb4b6667ecbe2fd..416a8dfb27bc4787b70fe79c687851a8dda64335 100644 --- a/app/api/routes.py +++ b/app/api/routes.py @@ -43,10 +43,12 @@ def search(): image = request.args.get("image") top_k = request.args.get("top_k", type=int) bucket = request.args.get("bucket") + part = request.args.get("part") + milvus = MilvusClient().connect() - result = ImageSearch(get_feature_extractor(), milvus).image_to_image_search(bucket, image, top_k) + result = ImageSearch(get_feature_extractor(), milvus).image_to_image_search(bucket, image, part, top_k) return jsonify({ 'code': 0, diff --git a/app/models/schp/.gitignore b/app/models/schp/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..67fde0e197356dc5dc75c4eff48000996b3a7ed4 --- /dev/null +++ b/app/models/schp/.gitignore @@ -0,0 +1,5 @@ +**/__pycache__ + +data/ +log/ +pretrain_model/ diff --git a/app/models/schp/LICENSE b/app/models/schp/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..62798356f28616a2ba91c923c83c49c4672316a1 --- /dev/null +++ b/app/models/schp/LICENSE @@ -0,0 +1,21 @@ +MIT License + +Copyright (c) 2020 Peike Li + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/app/models/schp/README.md b/app/models/schp/README.md new file mode 100644 index 0000000000000000000000000000000000000000..5a42a79d839f4e1de50201e38650bbfd40e2958b --- /dev/null +++ b/app/models/schp/README.md @@ -0,0 +1,129 @@ +# Self Correction for Human Parsing + + +[](https://opensource.org/licenses/MIT) + +An out-of-box human parsing representation extractor. + +Our solution ranks 1st for all human parsing tracks (including single, multiple and video) in the third LIP challenge! + + + +Features: +- [x] Out-of-box human parsing extractor for other downstream applications. +- [x] Pretrained model on three popular single person human parsing datasets. +- [x] Training and inferecne code. +- [x] Simple yet effective extension on multi-person and video human parsing tasks. + +## Requirements + +``` +conda env create -f environment.yaml +conda activate schp +pip install -r requirements.txt +``` + +## Simple Out-of-Box Extractor + +The easiest way to get started is to use our trained SCHP models on your own images to extract human parsing representations. Here we provided state-of-the-art [trained models](https://drive.google.com/drive/folders/1uOaQCpNtosIjEL2phQKEdiYd0Td18jNo?usp=sharing) on three popular datasets. Theses three datasets have different label system, you can choose the best one to fit on your own task. + +**LIP** ([exp-schp-201908261155-lip.pth](https://drive.google.com/file/d/1k4dllHpu0bdx38J7H28rVVLpU-kOHmnH/view?usp=sharing)) + +* mIoU on LIP validation: **59.36 %**. + +* LIP is the largest single person human parsing dataset with 50000+ images. This dataset focus more on the complicated real scenarios. LIP has 20 labels, including 'Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', 'Dress', 'Coat', 'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm', 'Right-arm', 'Left-leg', 'Right-leg', 'Left-shoe', 'Right-shoe'. + +**ATR** ([exp-schp-201908301523-atr.pth](https://drive.google.com/file/d/1ruJg4lqR_jgQPj-9K0PP-L2vJERYOxLP/view?usp=sharing)) + +* mIoU on ATR test: **82.29%**. + +* ATR is a large single person human parsing dataset with 17000+ images. This dataset focus more on fashion AI. ATR has 18 labels, including 'Background', 'Hat', 'Hair', 'Sunglasses', 'Upper-clothes', 'Skirt', 'Pants', 'Dress', 'Belt', 'Left-shoe', 'Right-shoe', 'Face', 'Left-leg', 'Right-leg', 'Left-arm', 'Right-arm', 'Bag', 'Scarf'. + +**Pascal-Person-Part** ([exp-schp-201908270938-pascal-person-part.pth](https://drive.google.com/file/d/1E5YwNKW2VOEayK9mWCS3Kpsxf-3z04ZE/view?usp=sharing)) + +* mIoU on Pascal-Person-Part validation: **71.46** %. + +* Pascal Person Part is a tiny single person human parsing dataset with 3000+ images. This dataset focus more on body parts segmentation. Pascal Person Part has 7 labels, including 'Background', 'Head', 'Torso', 'Upper Arms', 'Lower Arms', 'Upper Legs', 'Lower Legs'. + +Choose one and have fun on your own task! + +To extract the human parsing representation, simply put your own image in the `INPUT_PATH` folder, then download a pretrained model and run the following command. The output images with the same file name will be saved in `OUTPUT_PATH` + +``` +python simple_extractor.py --dataset [DATASET] --model-restore [CHECKPOINT_PATH] --input-dir [INPUT_PATH] --output-dir [OUTPUT_PATH] +``` + +**[Updated]** Here is also a [colab demo example](https://colab.research.google.com/drive/1JOwOPaChoc9GzyBi5FUEYTSaP2qxJl10?usp=sharing) for quick inference provided by [@levindabhi](https://github.com/levindabhi). + +The `DATASET` command has three options, including 'lip', 'atr' and 'pascal'. Note each pixel in the output images denotes the predicted label number. The output images have the same size as the input ones. To better visualization, we put a palette with the output images. We suggest you to read the image with `PIL`. + +If you need not only the final parsing images, but also the feature map representations. Add `--logits` command to save the output feature maps. These feature maps are the logits before softmax layer. + +## Dataset Preparation + +Please download the [LIP](http://sysu-hcp.net/lip/) dataset following the below structure. + +```commandline +data/LIP +|--- train_imgaes # 30462 training single person images +|--- val_images # 10000 validation single person images +|--- train_segmentations # 30462 training annotations +|--- val_segmentations # 10000 training annotations +|--- train_id.txt # training image list +|--- val_id.txt # validation image list +``` + +## Training + +``` +python train.py +``` +By default, the trained model will be saved in `./log` directory. Please read the arguments for more details. + +## Evaluation +``` +python evaluate.py --model-restore [CHECKPOINT_PATH] +``` +CHECKPOINT_PATH should be the path of trained model. + +## Extension on Multiple Human Parsing + +Please read [MultipleHumanParsing.md](./mhp_extension/README.md) for more details. + +## Citation + +Please cite our work if you find this repo useful in your research. + +```latex +@article{li2020self, + title={Self-Correction for Human Parsing}, + author={Li, Peike and Xu, Yunqiu and Wei, Yunchao and Yang, Yi}, + journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, + year={2020}, + doi={10.1109/TPAMI.2020.3048039}} +``` + +## Visualization + +* Source Image. + +* LIP Parsing Result. + +* ATR Parsing Result. + +* Pascal-Person-Part Parsing Result. + +* Source Image. + +* Instance Human Mask. + +* Global Human Parsing Result. + +* Multiple Human Parsing Result. + + + +## Related +Our code adopts the [InplaceSyncBN](https://github.com/mapillary/inplace_abn) to save gpu memory cost. + +There is also a [PaddlePaddle](https://github.com/PaddlePaddle/PaddleSeg/tree/develop/contrib/ACE2P) Implementation of this project. diff --git a/app/models/schp/datasets/__init__.py b/app/models/schp/datasets/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/app/models/schp/datasets/datasets.py b/app/models/schp/datasets/datasets.py new file mode 100644 index 0000000000000000000000000000000000000000..433f15af93029538b3b039f8f207764fcfe426d9 --- /dev/null +++ b/app/models/schp/datasets/datasets.py @@ -0,0 +1,201 @@ +#!/usr/bin/env python +# -*- encoding: utf-8 -*- + +""" +@Author : Peike Li +@Contact : peike.li@yahoo.com +@File : datasets.py +@Time : 8/4/19 3:35 PM +@Desc : +@License : This source code is licensed under the license found in the + LICENSE file in the root directory of this source tree. +""" + +import os +import numpy as np +import random +import torch +import cv2 +from torch.utils import data +from utils.transforms import get_affine_transform + + +class LIPDataSet(data.Dataset): + def __init__(self, root, dataset, crop_size=[473, 473], scale_factor=0.25, + rotation_factor=30, ignore_label=255, transform=None): + self.root = root + self.aspect_ratio = crop_size[1] * 1.0 / crop_size[0] + self.crop_size = np.asarray(crop_size) + self.ignore_label = ignore_label + self.scale_factor = scale_factor + self.rotation_factor = rotation_factor + self.flip_prob = 0.5 + self.transform = transform + self.dataset = dataset + + list_path = os.path.join(self.root, self.dataset + '_id.txt') + train_list = [i_id.strip() for i_id in open(list_path)] + + self.train_list = train_list + self.number_samples = len(self.train_list) + + def __len__(self): + return self.number_samples + + def _box2cs(self, box): + x, y, w, h = box[:4] + return self._xywh2cs(x, y, w, h) + + def _xywh2cs(self, x, y, w, h): + center = np.zeros((2), dtype=np.float32) + center[0] = x + w * 0.5 + center[1] = y + h * 0.5 + if w > self.aspect_ratio * h: + h = w * 1.0 / self.aspect_ratio + elif w < self.aspect_ratio * h: + w = h * self.aspect_ratio + scale = np.array([w * 1.0, h * 1.0], dtype=np.float32) + return center, scale + + def __getitem__(self, index): + train_item = self.train_list[index] + + im_path = os.path.join(self.root, self.dataset + '_images', train_item + '.jpg') + parsing_anno_path = os.path.join(self.root, self.dataset + '_segmentations', train_item + '.png') + + im = cv2.imread(im_path, cv2.IMREAD_COLOR) + h, w, _ = im.shape + parsing_anno = np.zeros((h, w), dtype=np.long) + + # Get person center and scale + person_center, s = self._box2cs([0, 0, w - 1, h - 1]) + r = 0 + + if self.dataset != 'test': + # Get pose annotation + parsing_anno = cv2.imread(parsing_anno_path, cv2.IMREAD_GRAYSCALE) + if self.dataset == 'train' or self.dataset == 'trainval': + sf = self.scale_factor + rf = self.rotation_factor + s = s * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf) + r = np.clip(np.random.randn() * rf, -rf * 2, rf * 2) if random.random() <= 0.6 else 0 + + if random.random() <= self.flip_prob: + im = im[:, ::-1, :] + parsing_anno = parsing_anno[:, ::-1] + person_center[0] = im.shape[1] - person_center[0] - 1 + right_idx = [15, 17, 19] + left_idx = [14, 16, 18] + for i in range(0, 3): + right_pos = np.where(parsing_anno == right_idx[i]) + left_pos = np.where(parsing_anno == left_idx[i]) + parsing_anno[right_pos[0], right_pos[1]] = left_idx[i] + parsing_anno[left_pos[0], left_pos[1]] = right_idx[i] + + trans = get_affine_transform(person_center, s, r, self.crop_size) + input = cv2.warpAffine( + im, + trans, + (int(self.crop_size[1]), int(self.crop_size[0])), + flags=cv2.INTER_LINEAR, + borderMode=cv2.BORDER_CONSTANT, + borderValue=(0, 0, 0)) + + if self.transform: + input = self.transform(input) + + meta = { + 'name': train_item, + 'center': person_center, + 'height': h, + 'width': w, + 'scale': s, + 'rotation': r + } + + if self.dataset == 'val' or self.dataset == 'test': + return input, meta + else: + label_parsing = cv2.warpAffine( + parsing_anno, + trans, + (int(self.crop_size[1]), int(self.crop_size[0])), + flags=cv2.INTER_NEAREST, + borderMode=cv2.BORDER_CONSTANT, + borderValue=(255)) + + label_parsing = torch.from_numpy(label_parsing) + + return input, label_parsing, meta + + +class LIPDataValSet(data.Dataset): + def __init__(self, root, dataset='val', crop_size=[473, 473], transform=None, flip=False): + self.root = root + self.crop_size = crop_size + self.transform = transform + self.flip = flip + self.dataset = dataset + self.root = root + self.aspect_ratio = crop_size[1] * 1.0 / crop_size[0] + self.crop_size = np.asarray(crop_size) + + list_path = os.path.join(self.root, self.dataset + '_id.txt') + val_list = [i_id.strip() for i_id in open(list_path)] + + self.val_list = val_list + self.number_samples = len(self.val_list) + + def __len__(self): + return len(self.val_list) + + def _box2cs(self, box): + x, y, w, h = box[:4] + return self._xywh2cs(x, y, w, h) + + def _xywh2cs(self, x, y, w, h): + center = np.zeros((2), dtype=np.float32) + center[0] = x + w * 0.5 + center[1] = y + h * 0.5 + if w > self.aspect_ratio * h: + h = w * 1.0 / self.aspect_ratio + elif w < self.aspect_ratio * h: + w = h * self.aspect_ratio + scale = np.array([w * 1.0, h * 1.0], dtype=np.float32) + + return center, scale + + def __getitem__(self, index): + val_item = self.val_list[index] + # Load training image + im_path = os.path.join(self.root, self.dataset + '_images', val_item + '.jpg') + im = cv2.imread(im_path, cv2.IMREAD_COLOR) + h, w, _ = im.shape + # Get person center and scale + person_center, s = self._box2cs([0, 0, w - 1, h - 1]) + r = 0 + trans = get_affine_transform(person_center, s, r, self.crop_size) + input = cv2.warpAffine( + im, + trans, + (int(self.crop_size[1]), int(self.crop_size[0])), + flags=cv2.INTER_LINEAR, + borderMode=cv2.BORDER_CONSTANT, + borderValue=(0, 0, 0)) + input = self.transform(input) + flip_input = input.flip(dims=[-1]) + if self.flip: + batch_input_im = torch.stack([input, flip_input]) + else: + batch_input_im = input + + meta = { + 'name': val_item, + 'center': person_center, + 'height': h, + 'width': w, + 'scale': s, + 'rotation': r + } + + return batch_input_im, meta diff --git a/app/models/schp/datasets/simple_extractor_dataset.py b/app/models/schp/datasets/simple_extractor_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..3a00204779cba946d035e20a3bea9521f0577686 --- /dev/null +++ b/app/models/schp/datasets/simple_extractor_dataset.py @@ -0,0 +1,78 @@ +#!/usr/bin/env python +# -*- encoding: utf-8 -*- + +""" +@Author : Peike Li +@Contact : peike.li@yahoo.com +@File : dataset.py +@Time : 8/30/19 9:12 PM +@Desc : Dataset Definition +@License : This source code is licensed under the license found in the + LICENSE file in the root directory of this source tree. +""" + +import os +import cv2 +import numpy as np + +from torch.utils import data +from utils.transforms import get_affine_transform + + +class SimpleFolderDataset(data.Dataset): + def __init__(self, root, input_size=[512, 512], transform=None): + self.root = root + self.input_size = input_size + self.transform = transform + self.aspect_ratio = input_size[1] * 1.0 / input_size[0] + self.input_size = np.asarray(input_size) + + self.file_list = os.listdir(self.root) + + def __len__(self): + return len(self.file_list) + + def _box2cs(self, box): + x, y, w, h = box[:4] + return self._xywh2cs(x, y, w, h) + + def _xywh2cs(self, x, y, w, h): + center = np.zeros((2), dtype=np.float32) + center[0] = x + w * 0.5 + center[1] = y + h * 0.5 + if w > self.aspect_ratio * h: + h = w * 1.0 / self.aspect_ratio + elif w < self.aspect_ratio * h: + w = h * self.aspect_ratio + scale = np.array([w, h], dtype=np.float32) + return center, scale + + def __getitem__(self, index): + img_name = self.file_list[index] + img_path = os.path.join(self.root, img_name) + img = cv2.imread(img_path, cv2.IMREAD_COLOR) + h, w, _ = img.shape + + # Get person center and scale + person_center, s = self._box2cs([0, 0, w - 1, h - 1]) + r = 0 + trans = get_affine_transform(person_center, s, r, self.input_size) + input = cv2.warpAffine( + img, + trans, + (int(self.input_size[1]), int(self.input_size[0])), + flags=cv2.INTER_LINEAR, + borderMode=cv2.BORDER_CONSTANT, + borderValue=(0, 0, 0)) + + input = self.transform(input) + meta = { + 'name': img_name, + 'center': person_center, + 'height': h, + 'width': w, + 'scale': s, + 'rotation': r + } + + return input, meta diff --git a/app/models/schp/datasets/target_generation.py b/app/models/schp/datasets/target_generation.py new file mode 100644 index 0000000000000000000000000000000000000000..8524db4427755c12ce71a4292d87ebb3e91762c1 --- /dev/null +++ b/app/models/schp/datasets/target_generation.py @@ -0,0 +1,40 @@ +import torch +from torch.nn import functional as F + + +def generate_edge_tensor(label, edge_width=3): + label = label.type(torch.cuda.FloatTensor) + if len(label.shape) == 2: + label = label.unsqueeze(0) + n, h, w = label.shape + edge = torch.zeros(label.shape, dtype=torch.float).cuda() + # right + edge_right = edge[:, 1:h, :] + edge_right[(label[:, 1:h, :] != label[:, :h - 1, :]) & (label[:, 1:h, :] != 255) + & (label[:, :h - 1, :] != 255)] = 1 + + # up + edge_up = edge[:, :, :w - 1] + edge_up[(label[:, :, :w - 1] != label[:, :, 1:w]) + & (label[:, :, :w - 1] != 255) + & (label[:, :, 1:w] != 255)] = 1 + + # upright + edge_upright = edge[:, :h - 1, :w - 1] + edge_upright[(label[:, :h - 1, :w - 1] != label[:, 1:h, 1:w]) + & (label[:, :h - 1, :w - 1] != 255) + & (label[:, 1:h, 1:w] != 255)] = 1 + + # bottomright + edge_bottomright = edge[:, :h - 1, 1:w] + edge_bottomright[(label[:, :h - 1, 1:w] != label[:, 1:h, :w - 1]) + & (label[:, :h - 1, 1:w] != 255) + & (label[:, 1:h, :w - 1] != 255)] = 1 + + kernel = torch.ones((1, 1, edge_width, edge_width), dtype=torch.float).cuda() + with torch.no_grad(): + edge = edge.unsqueeze(1) + edge = F.conv2d(edge, kernel, stride=1, padding=1) + edge[edge!=0] = 1 + edge = edge.squeeze() + return edge diff --git a/app/models/schp/environment.yaml b/app/models/schp/environment.yaml new file mode 100644 index 0000000000000000000000000000000000000000..037b3be67a371c390e3c0076f142927a6dc64893 --- /dev/null +++ b/app/models/schp/environment.yaml @@ -0,0 +1,49 @@ +name: schp +channels: + - pytorch + - defaults +dependencies: + - _libgcc_mutex=0.1=main + - blas=1.0=mkl + - ca-certificates=2020.12.8=h06a4308_0 + - certifi=2020.12.5=py38h06a4308_0 + - cudatoolkit=10.1.243=h6bb024c_0 + - freetype=2.10.4=h5ab3b9f_0 + - intel-openmp=2020.2=254 + - jpeg=9b=h024ee3a_2 + - lcms2=2.11=h396b838_0 + - ld_impl_linux-64=2.33.1=h53a641e_7 + - libedit=3.1.20191231=h14c3975_1 + - libffi=3.3=he6710b0_2 + - libgcc-ng=9.1.0=hdf63c60_0 + - libpng=1.6.37=hbc83047_0 + - libstdcxx-ng=9.1.0=hdf63c60_0 + - libtiff=4.1.0=h2733197_1 + - lz4-c=1.9.2=heb0550a_3 + - mkl=2020.2=256 + - mkl-service=2.3.0=py38he904b0f_0 + - mkl_fft=1.2.0=py38h23d657b_0 + - mkl_random=1.1.1=py38h0573a6f_0 + - ncurses=6.2=he6710b0_1 + - ninja=1.10.2=py38hff7bd54_0 + - numpy=1.19.2=py38h54aff64_0 + - numpy-base=1.19.2=py38hfa32c7d_0 + - olefile=0.46=py_0 + - openssl=1.1.1i=h27cfd23_0 + - pillow=8.0.1=py38he98fc37_0 + - pip=20.3.3=py38h06a4308_0 + - python=3.8.5=h7579374_1 + - readline=8.0=h7b6447c_0 + - setuptools=51.0.0=py38h06a4308_2 + - six=1.15.0=py38h06a4308_0 + - sqlite=3.33.0=h62c20be_0 + - tk=8.6.10=hbc83047_0 + - tqdm=4.55.0=pyhd3eb1b0_0 + - wheel=0.36.2=pyhd3eb1b0_0 + - xz=5.2.5=h7b6447c_0 + - zlib=1.2.11=h7b6447c_3 + - zstd=1.4.5=h9ceee32_0 + - pytorch=1.5.1=py3.8_cuda10.1.243_cudnn7.6.3_0 + - torchvision=0.6.1=py38_cu101 +prefix: /home/peike/opt/anaconda3/envs/schp + diff --git a/app/models/schp/evaluate.py b/app/models/schp/evaluate.py new file mode 100644 index 0000000000000000000000000000000000000000..c1dd9088e5dae7783e00ac153d7b201ff437e6fb --- /dev/null +++ b/app/models/schp/evaluate.py @@ -0,0 +1,209 @@ +#!/usr/bin/env python +# -*- encoding: utf-8 -*- + +""" +@Author : Peike Li +@Contact : peike.li@yahoo.com +@File : evaluate.py +@Time : 8/4/19 3:36 PM +@Desc : +@License : This source code is licensed under the license found in the + LICENSE file in the root directory of this source tree. +""" + +import os +import argparse +import numpy as np +import torch + +from torch.utils import data +from tqdm import tqdm +from PIL import Image as PILImage +import torchvision.transforms as transforms +import torch.backends.cudnn as cudnn + +import networks +from datasets.datasets import LIPDataValSet +from utils.miou import compute_mean_ioU +from utils.transforms import BGR2RGB_transform +from utils.transforms import transform_parsing + + +def get_arguments(): + """Parse all the arguments provided from the CLI. + + Returns: + A list of parsed arguments. + """ + parser = argparse.ArgumentParser(description="Self Correction for Human Parsing") + + # Network Structure + parser.add_argument("--arch", type=str, default='resnet101') + # Data Preference + parser.add_argument("--data-dir", type=str, default='./data/LIP') + parser.add_argument("--batch-size", type=int, default=1) + parser.add_argument("--input-size", type=str, default='473,473') + parser.add_argument("--num-classes", type=int, default=20) + parser.add_argument("--ignore-label", type=int, default=255) + parser.add_argument("--random-mirror", action="store_true") + parser.add_argument("--random-scale", action="store_true") + # Evaluation Preference + parser.add_argument("--log-dir", type=str, default='./log') + parser.add_argument("--model-restore", type=str, default='./log/checkpoint.pth.tar') + parser.add_argument("--gpu", type=str, default='0', help="choose gpu device.") + parser.add_argument("--save-results", action="store_true", help="whether to save the results.") + parser.add_argument("--flip", action="store_true", help="random flip during the test.") + parser.add_argument("--multi-scales", type=str, default='1', help="multiple scales during the test") + return parser.parse_args() + + +def get_palette(num_cls): + """ Returns the color map for visualizing the segmentation mask. + Args: + num_cls: Number of classes + Returns: + The color map + """ + n = num_cls + palette = [0] * (n * 3) + for j in range(0, n): + lab = j + palette[j * 3 + 0] = 0 + palette[j * 3 + 1] = 0 + palette[j * 3 + 2] = 0 + i = 0 + while lab: + palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i)) + palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i)) + palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i)) + i += 1 + lab >>= 3 + return palette + + +def multi_scale_testing(model, batch_input_im, crop_size=[473, 473], flip=True, multi_scales=[1]): + flipped_idx = (15, 14, 17, 16, 19, 18) + if len(batch_input_im.shape) > 4: + batch_input_im = batch_input_im.squeeze() + if len(batch_input_im.shape) == 3: + batch_input_im = batch_input_im.unsqueeze(0) + + interp = torch.nn.Upsample(size=crop_size, mode='bilinear', align_corners=True) + ms_outputs = [] + for s in multi_scales: + interp_im = torch.nn.Upsample(scale_factor=s, mode='bilinear', align_corners=True) + scaled_im = interp_im(batch_input_im) + parsing_output = model(scaled_im) + parsing_output = parsing_output[0][-1] + output = parsing_output[0] + if flip: + flipped_output = parsing_output[1] + flipped_output[14:20, :, :] = flipped_output[flipped_idx, :, :] + output += flipped_output.flip(dims=[-1]) + output *= 0.5 + output = interp(output.unsqueeze(0)) + ms_outputs.append(output[0]) + ms_fused_parsing_output = torch.stack(ms_outputs) + ms_fused_parsing_output = ms_fused_parsing_output.mean(0) + ms_fused_parsing_output = ms_fused_parsing_output.permute(1, 2, 0) # HWC + parsing = torch.argmax(ms_fused_parsing_output, dim=2) + parsing = parsing.data.cpu().numpy() + ms_fused_parsing_output = ms_fused_parsing_output.data.cpu().numpy() + return parsing, ms_fused_parsing_output + + +def main(): + """Create the model and start the evaluation process.""" + args = get_arguments() + multi_scales = [float(i) for i in args.multi_scales.split(',')] + gpus = [int(i) for i in args.gpu.split(',')] + assert len(gpus) == 1 + if not args.gpu == 'None': + os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu + + cudnn.benchmark = True + cudnn.enabled = True + + h, w = map(int, args.input_size.split(',')) + input_size = [h, w] + + model = networks.init_model(args.arch, num_classes=args.num_classes, pretrained=None) + + IMAGE_MEAN = model.mean + IMAGE_STD = model.std + INPUT_SPACE = model.input_space + print('image mean: {}'.format(IMAGE_MEAN)) + print('image std: {}'.format(IMAGE_STD)) + print('input space:{}'.format(INPUT_SPACE)) + if INPUT_SPACE == 'BGR': + print('BGR Transformation') + transform = transforms.Compose([ + transforms.ToTensor(), + transforms.Normalize(mean=IMAGE_MEAN, + std=IMAGE_STD), + + ]) + if INPUT_SPACE == 'RGB': + print('RGB Transformation') + transform = transforms.Compose([ + transforms.ToTensor(), + BGR2RGB_transform(), + transforms.Normalize(mean=IMAGE_MEAN, + std=IMAGE_STD), + ]) + + # Data loader + lip_test_dataset = LIPDataValSet(args.data_dir, 'val', crop_size=input_size, transform=transform, flip=args.flip) + num_samples = len(lip_test_dataset) + print('Totoal testing sample numbers: {}'.format(num_samples)) + testloader = data.DataLoader(lip_test_dataset, batch_size=args.batch_size, shuffle=False, pin_memory=True) + + # Load model weight + state_dict = torch.load(args.model_restore)['state_dict'] + from collections import OrderedDict + new_state_dict = OrderedDict() + for k, v in state_dict.items(): + name = k[7:] # remove `module.` + new_state_dict[name] = v + model.load_state_dict(new_state_dict) + model.cuda() + model.eval() + + sp_results_dir = os.path.join(args.log_dir, 'sp_results') + if not os.path.exists(sp_results_dir): + os.makedirs(sp_results_dir) + + palette = get_palette(20) + parsing_preds = [] + scales = np.zeros((num_samples, 2), dtype=np.float32) + centers = np.zeros((num_samples, 2), dtype=np.int32) + with torch.no_grad(): + for idx, batch in enumerate(tqdm(testloader)): + image, meta = batch + if (len(image.shape) > 4): + image = image.squeeze() + im_name = meta['name'][0] + c = meta['center'].numpy()[0] + s = meta['scale'].numpy()[0] + w = meta['width'].numpy()[0] + h = meta['height'].numpy()[0] + scales[idx, :] = s + centers[idx, :] = c + parsing, logits = multi_scale_testing(model, image.cuda(), crop_size=input_size, flip=args.flip, + multi_scales=multi_scales) + if args.save_results: + parsing_result = transform_parsing(parsing, c, s, w, h, input_size) + parsing_result_path = os.path.join(sp_results_dir, im_name + '.png') + output_im = PILImage.fromarray(np.asarray(parsing_result, dtype=np.uint8)) + output_im.putpalette(palette) + output_im.save(parsing_result_path) + + parsing_preds.append(parsing) + assert len(parsing_preds) == num_samples + mIoU = compute_mean_ioU(parsing_preds, scales, centers, args.num_classes, args.data_dir, input_size) + print(mIoU) + return + + +if __name__ == '__main__': + main() diff --git a/app/models/schp/mask.py b/app/models/schp/mask.py new file mode 100644 index 0000000000000000000000000000000000000000..772d48b5853076611336a8df7d88f1b9344a8fcf --- /dev/null +++ b/app/models/schp/mask.py @@ -0,0 +1,104 @@ +import cv2 +import numpy as np +from PIL import Image + + +def extract_color_region_simple(original_image, mask_image, target_color, margin=10): + """ + 简化版本:æå–指定颜色区域,白色背景 + + Args: + original_image: 原始图片 PIL Image 对象 + mask_image: 色å—图 PIL Image 对象 + target_color: ç›®æ ‡é¢œè‰² RGB值,例如 [192, 0, 0] (红色) + margin: è£å‰ªè¾¹è·ï¼Œé»˜è®¤ 10 + + Returns: + PIL.Image: æå–的颜色区域图片,失败返回 None + """ + + if original_image is None: + print("原始图片为空") + return None + + if mask_image is None: + print("掩ç 图片为空") + return None + + # å°†PIL Image转æ¢ä¸ºnumpy数组 + original_rgb = np.array(original_image.convert('RGB')) + mask_rgb = np.array(mask_image.convert('RGB')) + + # åˆ›å»ºç›®æ ‡é¢œè‰²æŽ©ç - ç²¾ç¡®åŒ¹é… + target_color = np.array(target_color) + color_mask = np.all(mask_rgb == target_color, axis=2).astype(np.uint8) * 255 + + # å½¢æ€å¦å¤„ç† + kernel = np.ones((3, 3), np.uint8) + color_mask = cv2.morphologyEx(color_mask, cv2.MORPH_CLOSE, kernel) + color_mask = cv2.morphologyEx(color_mask, cv2.MORPH_OPEN, kernel) + + # 调整掩ç 尺寸 + if color_mask.shape != original_rgb.shape[:2]: + color_mask = cv2.resize(color_mask, (original_rgb.shape[1], original_rgb.shape[0])) + + # 找边界框并è£å‰ª + coords = np.column_stack(np.where(color_mask > 0)) + if len(coords) == 0: + print(f"æœªæ‰¾åˆ°ç›®æ ‡é¢œè‰²åŒºåŸŸ RGB{target_color.tolist()}ï¼") + return None + + y_min, x_min = coords.min(axis=0) + y_max, x_max = coords.max(axis=0) + + # æ·»åŠ è¾¹è· + y_min = max(0, y_min - margin) + x_min = max(0, x_min - margin) + y_max = min(original_rgb.shape[0], y_max + margin) + x_max = min(original_rgb.shape[1], x_max + margin) + + # è£å‰ª + cropped_original = original_rgb[y_min:y_max, x_min:x_max] + cropped_mask = color_mask[y_min:y_max, x_min:x_max] + + # 创建白色背景结果 + result = np.full_like(cropped_original, 255, dtype=np.uint8) + result[cropped_mask > 0] = cropped_original[cropped_mask > 0] + + # ç»Ÿè®¡ä¿¡æ¯ + mask_pixels = np.sum(cropped_mask > 0) + total_pixels = cropped_mask.shape[0] * cropped_mask.shape[1] + + print(f"æå–完æˆ") + print(f"ç›®æ ‡é¢œè‰²: RGB{target_color.tolist()}") + print(f"è£å‰ªåŒºåŸŸå°ºå¯¸: {result.shape[1]} x {result.shape[0]}") + print(f"ç›®æ ‡é¢œè‰²åƒç´ æ•°é‡: {mask_pixels}") + print(f"å è£å‰ªåŒºåŸŸçš„æ¯”例: {mask_pixels / total_pixels * 100:.2f}%") + + # 转æ¢ä¸ºPIL Image并返回 + pil_image = Image.fromarray(result) + return pil_image + + +# 使用示例 +if __name__ == "__main__": + # ä»Žæ–‡ä»¶åŠ è½½PIL Image + original_image_path = r"D:\work\image_search\img1.jpg" + mask_image_path = r"D:\work\image_search\output.png" + + original_image = Image.open(original_image_path) + mask_image = Image.open(mask_image_path) + + # 示例: æå–红色区域 + print("=== æå–红色区域 ===") + result_image_red = extract_color_region_simple( + original_image, + mask_image, + target_color=[192, 0, 0] + ) + + if result_image_red: + result_image_red.save(r"D:\work\image_search\extracted_red.png") + print("红色区域æå–æˆåŠŸå¹¶å·²ä¿å˜") + else: + print("红色区域æå–失败") diff --git a/app/models/schp/modules/__init__.py b/app/models/schp/modules/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..8a098dee5911f3613d320d23db37bc401cf57fa4 --- /dev/null +++ b/app/models/schp/modules/__init__.py @@ -0,0 +1,5 @@ +from .bn import ABN, InPlaceABN, InPlaceABNSync +from .functions import ACT_RELU, ACT_LEAKY_RELU, ACT_ELU, ACT_NONE +from .misc import GlobalAvgPool2d, SingleGPU +from .residual import IdentityResidualBlock +from .dense import DenseModule diff --git a/app/models/schp/modules/bn.py b/app/models/schp/modules/bn.py new file mode 100644 index 0000000000000000000000000000000000000000..a794698867e89140a030d550d832e6fa12561c8b --- /dev/null +++ b/app/models/schp/modules/bn.py @@ -0,0 +1,132 @@ +import torch +import torch.nn as nn +import torch.nn.functional as functional + +try: + from queue import Queue +except ImportError: + from Queue import Queue + +from .functions import * + + +class ABN(nn.Module): + """Activated Batch Normalization + + This gathers a `BatchNorm2d` and an activation function in a single module + """ + + def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, activation="leaky_relu", slope=0.01): + """Creates an Activated Batch Normalization module + + Parameters + ---------- + num_features : int + Number of feature channels in the input and output. + eps : float + Small constant to prevent numerical issues. + momentum : float + Momentum factor applied to compute running statistics as. + affine : bool + If `True` apply learned scale and shift transformation after normalization. + activation : str + Name of the activation functions, one of: `leaky_relu`, `elu` or `none`. + slope : float + Negative slope for the `leaky_relu` activation. + """ + super(ABN, self).__init__() + self.num_features = num_features + self.affine = affine + self.eps = eps + self.momentum = momentum + self.activation = activation + self.slope = slope + if self.affine: + self.weight = nn.Parameter(torch.ones(num_features)) + self.bias = nn.Parameter(torch.zeros(num_features)) + else: + self.register_parameter('weight', None) + self.register_parameter('bias', None) + self.register_buffer('running_mean', torch.zeros(num_features)) + self.register_buffer('running_var', torch.ones(num_features)) + self.reset_parameters() + + def reset_parameters(self): + nn.init.constant_(self.running_mean, 0) + nn.init.constant_(self.running_var, 1) + if self.affine: + nn.init.constant_(self.weight, 1) + nn.init.constant_(self.bias, 0) + + def forward(self, x): + x = functional.batch_norm(x, self.running_mean, self.running_var, self.weight, self.bias, + self.training, self.momentum, self.eps) + + if self.activation == ACT_RELU: + return functional.relu(x, inplace=True) + elif self.activation == ACT_LEAKY_RELU: + return functional.leaky_relu(x, negative_slope=self.slope, inplace=True) + elif self.activation == ACT_ELU: + return functional.elu(x, inplace=True) + else: + return x + + def __repr__(self): + rep = '{name}({num_features}, eps={eps}, momentum={momentum},' \ + ' affine={affine}, activation={activation}' + if self.activation == "leaky_relu": + rep += ', slope={slope})' + else: + rep += ')' + return rep.format(name=self.__class__.__name__, **self.__dict__) + + +class InPlaceABN(ABN): + """InPlace Activated Batch Normalization""" + + def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, activation="leaky_relu", slope=0.01): + """Creates an InPlace Activated Batch Normalization module + + Parameters + ---------- + num_features : int + Number of feature channels in the input and output. + eps : float + Small constant to prevent numerical issues. + momentum : float + Momentum factor applied to compute running statistics as. + affine : bool + If `True` apply learned scale and shift transformation after normalization. + activation : str + Name of the activation functions, one of: `leaky_relu`, `elu` or `none`. + slope : float + Negative slope for the `leaky_relu` activation. + """ + super(InPlaceABN, self).__init__(num_features, eps, momentum, affine, activation, slope) + + def forward(self, x): + x, _, _ = inplace_abn(x, self.weight, self.bias, self.running_mean, self.running_var, + self.training, self.momentum, self.eps, self.activation, self.slope) + return x + + +class InPlaceABNSync(ABN): + """InPlace Activated Batch Normalization with cross-GPU synchronization + This assumes that it will be replicated across GPUs using the same mechanism as in `nn.DistributedDataParallel`. + """ + + def forward(self, x): + x, _, _ = inplace_abn_sync(x, self.weight, self.bias, self.running_mean, self.running_var, + self.training, self.momentum, self.eps, self.activation, self.slope) + return x + + def __repr__(self): + rep = '{name}({num_features}, eps={eps}, momentum={momentum},' \ + ' affine={affine}, activation={activation}' + if self.activation == "leaky_relu": + rep += ', slope={slope})' + else: + rep += ')' + return rep.format(name=self.__class__.__name__, **self.__dict__) + + diff --git a/app/models/schp/modules/deeplab.py b/app/models/schp/modules/deeplab.py new file mode 100644 index 0000000000000000000000000000000000000000..fd25b78369b27ef02c183a0b17b9bf8354c5f7c3 --- /dev/null +++ b/app/models/schp/modules/deeplab.py @@ -0,0 +1,84 @@ +import torch +import torch.nn as nn +import torch.nn.functional as functional + +from models._util import try_index +from .bn import ABN + + +class DeeplabV3(nn.Module): + def __init__(self, + in_channels, + out_channels, + hidden_channels=256, + dilations=(12, 24, 36), + norm_act=ABN, + pooling_size=None): + super(DeeplabV3, self).__init__() + self.pooling_size = pooling_size + + self.map_convs = nn.ModuleList([ + nn.Conv2d(in_channels, hidden_channels, 1, bias=False), + nn.Conv2d(in_channels, hidden_channels, 3, bias=False, dilation=dilations[0], padding=dilations[0]), + nn.Conv2d(in_channels, hidden_channels, 3, bias=False, dilation=dilations[1], padding=dilations[1]), + nn.Conv2d(in_channels, hidden_channels, 3, bias=False, dilation=dilations[2], padding=dilations[2]) + ]) + self.map_bn = norm_act(hidden_channels * 4) + + self.global_pooling_conv = nn.Conv2d(in_channels, hidden_channels, 1, bias=False) + self.global_pooling_bn = norm_act(hidden_channels) + + self.red_conv = nn.Conv2d(hidden_channels * 4, out_channels, 1, bias=False) + self.pool_red_conv = nn.Conv2d(hidden_channels, out_channels, 1, bias=False) + self.red_bn = norm_act(out_channels) + + self.reset_parameters(self.map_bn.activation, self.map_bn.slope) + + def reset_parameters(self, activation, slope): + gain = nn.init.calculate_gain(activation, slope) + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.xavier_normal_(m.weight.data, gain) + if hasattr(m, "bias") and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, ABN): + if hasattr(m, "weight") and m.weight is not None: + nn.init.constant_(m.weight, 1) + if hasattr(m, "bias") and m.bias is not None: + nn.init.constant_(m.bias, 0) + + def forward(self, x): + # Map convolutions + out = torch.cat([m(x) for m in self.map_convs], dim=1) + out = self.map_bn(out) + out = self.red_conv(out) + + # Global pooling + pool = self._global_pooling(x) + pool = self.global_pooling_conv(pool) + pool = self.global_pooling_bn(pool) + pool = self.pool_red_conv(pool) + if self.training or self.pooling_size is None: + pool = pool.repeat(1, 1, x.size(2), x.size(3)) + + out += pool + out = self.red_bn(out) + return out + + def _global_pooling(self, x): + if self.training or self.pooling_size is None: + pool = x.view(x.size(0), x.size(1), -1).mean(dim=-1) + pool = pool.view(x.size(0), x.size(1), 1, 1) + else: + pooling_size = (min(try_index(self.pooling_size, 0), x.shape[2]), + min(try_index(self.pooling_size, 1), x.shape[3])) + padding = ( + (pooling_size[1] - 1) // 2, + (pooling_size[1] - 1) // 2 if pooling_size[1] % 2 == 1 else (pooling_size[1] - 1) // 2 + 1, + (pooling_size[0] - 1) // 2, + (pooling_size[0] - 1) // 2 if pooling_size[0] % 2 == 1 else (pooling_size[0] - 1) // 2 + 1 + ) + + pool = functional.avg_pool2d(x, pooling_size, stride=1) + pool = functional.pad(pool, pad=padding, mode="replicate") + return pool diff --git a/app/models/schp/modules/dense.py b/app/models/schp/modules/dense.py new file mode 100644 index 0000000000000000000000000000000000000000..9638d6e86d2ae838550fefa9002a984af52e6cc8 --- /dev/null +++ b/app/models/schp/modules/dense.py @@ -0,0 +1,42 @@ +from collections import OrderedDict + +import torch +import torch.nn as nn + +from .bn import ABN + + +class DenseModule(nn.Module): + def __init__(self, in_channels, growth, layers, bottleneck_factor=4, norm_act=ABN, dilation=1): + super(DenseModule, self).__init__() + self.in_channels = in_channels + self.growth = growth + self.layers = layers + + self.convs1 = nn.ModuleList() + self.convs3 = nn.ModuleList() + for i in range(self.layers): + self.convs1.append(nn.Sequential(OrderedDict([ + ("bn", norm_act(in_channels)), + ("conv", nn.Conv2d(in_channels, self.growth * bottleneck_factor, 1, bias=False)) + ]))) + self.convs3.append(nn.Sequential(OrderedDict([ + ("bn", norm_act(self.growth * bottleneck_factor)), + ("conv", nn.Conv2d(self.growth * bottleneck_factor, self.growth, 3, padding=dilation, bias=False, + dilation=dilation)) + ]))) + in_channels += self.growth + + @property + def out_channels(self): + return self.in_channels + self.growth * self.layers + + def forward(self, x): + inputs = [x] + for i in range(self.layers): + x = torch.cat(inputs, dim=1) + x = self.convs1[i](x) + x = self.convs3[i](x) + inputs += [x] + + return torch.cat(inputs, dim=1) diff --git a/app/models/schp/modules/functions.py b/app/models/schp/modules/functions.py new file mode 100644 index 0000000000000000000000000000000000000000..7fede1cc44a461449f982442e4478e9f308c61ec --- /dev/null +++ b/app/models/schp/modules/functions.py @@ -0,0 +1,256 @@ +from os import path +import torch +import torch.distributed as dist +import torch.autograd as autograd +import torch.cuda.comm as comm +from torch.autograd.function import once_differentiable +from torch.utils.cpp_extension import load + +_src_path = path.join(path.dirname(path.abspath(__file__)), "src") +# 检查CUDA是å¦å¯ç”¨ +if torch.cuda.is_available(): + sources = [path.join(_src_path, f) for f in [ + "inplace_abn.cpp", + "inplace_abn_cpu.cpp", + "inplace_abn_cuda.cu", + "inplace_abn_cuda_half.cu" + ]] + extra_cuda_cflags = ["--expt-extended-lambda"] +else: + # CPU-only版本 + sources = [path.join(_src_path, f) for f in [ + "inplace_abn.cpp", + "inplace_abn_cpu.cpp" + ]] + extra_cuda_cflags = [] + +_backend = load(name="inplace_abn", + extra_cflags=["-O3"], + sources=sources, + extra_cuda_cflags=extra_cuda_cflags) + +# Activation names +ACT_RELU = "relu" +ACT_LEAKY_RELU = "leaky_relu" +ACT_ELU = "elu" +ACT_NONE = "none" + + +def _check(fn, *args, **kwargs): + success = fn(*args, **kwargs) + if not success: + raise RuntimeError("CUDA Error encountered in {}".format(fn)) + + +def _broadcast_shape(x): + out_size = [] + for i, s in enumerate(x.size()): + if i != 1: + out_size.append(1) + else: + out_size.append(s) + return out_size + + +def _reduce(x): + if len(x.size()) == 2: + return x.sum(dim=0) + else: + n, c = x.size()[0:2] + return x.contiguous().view((n, c, -1)).sum(2).sum(0) + + +def _count_samples(x): + count = 1 + for i, s in enumerate(x.size()): + if i != 1: + count *= s + return count + + +def _act_forward(ctx, x): + if ctx.activation == ACT_LEAKY_RELU: + _backend.leaky_relu_forward(x, ctx.slope) + elif ctx.activation == ACT_ELU: + _backend.elu_forward(x) + elif ctx.activation == ACT_NONE: + pass + + +def _act_backward(ctx, x, dx): + if ctx.activation == ACT_LEAKY_RELU: + _backend.leaky_relu_backward(x, dx, ctx.slope) + elif ctx.activation == ACT_ELU: + _backend.elu_backward(x, dx) + elif ctx.activation == ACT_NONE: + pass + + +class InPlaceABN(autograd.Function): + @staticmethod + def forward(ctx, x, weight, bias, running_mean, running_var, + training=True, momentum=0.1, eps=1e-05, activation=ACT_LEAKY_RELU, slope=0.01): + # Save context + ctx.training = training + ctx.momentum = momentum + ctx.eps = eps + ctx.activation = activation + ctx.slope = slope + ctx.affine = weight is not None and bias is not None + + # Prepare inputs + count = _count_samples(x) + x = x.contiguous() + weight = weight.contiguous() if ctx.affine else x.new_empty(0) + bias = bias.contiguous() if ctx.affine else x.new_empty(0) + + if ctx.training: + mean, var = _backend.mean_var(x) + + # Update running stats + running_mean.mul_((1 - ctx.momentum)).add_(ctx.momentum * mean) + running_var.mul_((1 - ctx.momentum)).add_(ctx.momentum * var * count / (count - 1)) + + # Mark in-place modified tensors + ctx.mark_dirty(x, running_mean, running_var) + else: + mean, var = running_mean.contiguous(), running_var.contiguous() + ctx.mark_dirty(x) + + # BN forward + activation + _backend.forward(x, mean, var, weight, bias, ctx.affine, ctx.eps) + _act_forward(ctx, x) + + # Output + ctx.var = var + ctx.save_for_backward(x, var, weight, bias) + ctx.mark_non_differentiable(running_mean, running_var) + return x, running_mean, running_var + + @staticmethod + @once_differentiable + def backward(ctx, dz, _drunning_mean, _drunning_var): + z, var, weight, bias = ctx.saved_tensors + dz = dz.contiguous() + + # Undo activation + _act_backward(ctx, z, dz) + + if ctx.training: + edz, eydz = _backend.edz_eydz(z, dz, weight, bias, ctx.affine, ctx.eps) + else: + # TODO: implement simplified CUDA backward for inference mode + edz = dz.new_zeros(dz.size(1)) + eydz = dz.new_zeros(dz.size(1)) + + dx = _backend.backward(z, dz, var, weight, bias, edz, eydz, ctx.affine, ctx.eps) + # dweight = eydz * weight.sign() if ctx.affine else None + dweight = eydz if ctx.affine else None + if dweight is not None: + dweight[weight < 0] *= -1 + dbias = edz if ctx.affine else None + + return dx, dweight, dbias, None, None, None, None, None, None, None + + +class InPlaceABNSync(autograd.Function): + @classmethod + def forward(cls, ctx, x, weight, bias, running_mean, running_var, + training=True, momentum=0.1, eps=1e-05, activation=ACT_LEAKY_RELU, slope=0.01, equal_batches=True): + # Save context + ctx.training = training + ctx.momentum = momentum + ctx.eps = eps + ctx.activation = activation + ctx.slope = slope + ctx.affine = weight is not None and bias is not None + + # Prepare inputs + ctx.world_size = dist.get_world_size() if dist.is_initialized() else 1 + + # count = _count_samples(x) + batch_size = x.new_tensor([x.shape[0]], dtype=torch.long) + + x = x.contiguous() + weight = weight.contiguous() if ctx.affine else x.new_empty(0) + bias = bias.contiguous() if ctx.affine else x.new_empty(0) + + if ctx.training: + mean, var = _backend.mean_var(x) + if ctx.world_size > 1: + # get global batch size + if equal_batches: + batch_size *= ctx.world_size + else: + dist.all_reduce(batch_size, dist.ReduceOp.SUM) + + ctx.factor = x.shape[0] / float(batch_size.item()) + + mean_all = mean.clone() * ctx.factor + dist.all_reduce(mean_all, dist.ReduceOp.SUM) + + var_all = (var + (mean - mean_all) ** 2) * ctx.factor + dist.all_reduce(var_all, dist.ReduceOp.SUM) + + mean = mean_all + var = var_all + + # Update running stats + running_mean.mul_((1 - ctx.momentum)).add_(ctx.momentum * mean) + count = batch_size.item() * x.view(x.shape[0], x.shape[1], -1).shape[-1] + running_var.mul_((1 - ctx.momentum)).add_(ctx.momentum * var * (float(count) / (count - 1))) + + # Mark in-place modified tensors + ctx.mark_dirty(x, running_mean, running_var) + else: + mean, var = running_mean.contiguous(), running_var.contiguous() + ctx.mark_dirty(x) + + # BN forward + activation + _backend.forward(x, mean, var, weight, bias, ctx.affine, ctx.eps) + _act_forward(ctx, x) + + # Output + ctx.var = var + ctx.save_for_backward(x, var, weight, bias) + ctx.mark_non_differentiable(running_mean, running_var) + return x, running_mean, running_var + + @staticmethod + @once_differentiable + def backward(ctx, dz, _drunning_mean, _drunning_var): + z, var, weight, bias = ctx.saved_tensors + dz = dz.contiguous() + + # Undo activation + _act_backward(ctx, z, dz) + + if ctx.training: + edz, eydz = _backend.edz_eydz(z, dz, weight, bias, ctx.affine, ctx.eps) + edz_local = edz.clone() + eydz_local = eydz.clone() + + if ctx.world_size > 1: + edz *= ctx.factor + dist.all_reduce(edz, dist.ReduceOp.SUM) + + eydz *= ctx.factor + dist.all_reduce(eydz, dist.ReduceOp.SUM) + else: + edz_local = edz = dz.new_zeros(dz.size(1)) + eydz_local = eydz = dz.new_zeros(dz.size(1)) + + dx = _backend.backward(z, dz, var, weight, bias, edz, eydz, ctx.affine, ctx.eps) + # dweight = eydz_local * weight.sign() if ctx.affine else None + dweight = eydz_local if ctx.affine else None + if dweight is not None: + dweight[weight < 0] *= -1 + dbias = edz_local if ctx.affine else None + + return dx, dweight, dbias, None, None, None, None, None, None, None + + +inplace_abn = InPlaceABN.apply +inplace_abn_sync = InPlaceABNSync.apply + +__all__ = ["inplace_abn", "inplace_abn_sync", "ACT_RELU", "ACT_LEAKY_RELU", "ACT_ELU", "ACT_NONE"] diff --git a/app/models/schp/modules/misc.py b/app/models/schp/modules/misc.py new file mode 100644 index 0000000000000000000000000000000000000000..3c50b69b38c950801baacba8b3684ffd23aef08b --- /dev/null +++ b/app/models/schp/modules/misc.py @@ -0,0 +1,21 @@ +import torch.nn as nn +import torch +import torch.distributed as dist + +class GlobalAvgPool2d(nn.Module): + def __init__(self): + """Global average pooling over the input's spatial dimensions""" + super(GlobalAvgPool2d, self).__init__() + + def forward(self, inputs): + in_size = inputs.size() + return inputs.view((in_size[0], in_size[1], -1)).mean(dim=2) + +class SingleGPU(nn.Module): + def __init__(self, module): + super(SingleGPU, self).__init__() + self.module=module + + def forward(self, input): + return self.module(input.cuda(non_blocking=True)) + diff --git a/app/models/schp/modules/residual.py b/app/models/schp/modules/residual.py new file mode 100644 index 0000000000000000000000000000000000000000..8a5c90e0606a451ff690f67a2feac28476241d86 --- /dev/null +++ b/app/models/schp/modules/residual.py @@ -0,0 +1,182 @@ +from collections import OrderedDict + +import torch.nn as nn + +from .bn import ABN, ACT_LEAKY_RELU, ACT_ELU, ACT_NONE +import torch.nn.functional as functional + + +class ResidualBlock(nn.Module): + """Configurable residual block + + Parameters + ---------- + in_channels : int + Number of input channels. + channels : list of int + Number of channels in the internal feature maps. Can either have two or three elements: if three construct + a residual block with two `3 x 3` convolutions, otherwise construct a bottleneck block with `1 x 1`, then + `3 x 3` then `1 x 1` convolutions. + stride : int + Stride of the first `3 x 3` convolution + dilation : int + Dilation to apply to the `3 x 3` convolutions. + groups : int + Number of convolution groups. This is used to create ResNeXt-style blocks and is only compatible with + bottleneck blocks. + norm_act : callable + Function to create normalization / activation Module. + dropout: callable + Function to create Dropout Module. + """ + + def __init__(self, + in_channels, + channels, + stride=1, + dilation=1, + groups=1, + norm_act=ABN, + dropout=None): + super(ResidualBlock, self).__init__() + + # Check parameters for inconsistencies + if len(channels) != 2 and len(channels) != 3: + raise ValueError("channels must contain either two or three values") + if len(channels) == 2 and groups != 1: + raise ValueError("groups > 1 are only valid if len(channels) == 3") + + is_bottleneck = len(channels) == 3 + need_proj_conv = stride != 1 or in_channels != channels[-1] + + if not is_bottleneck: + bn2 = norm_act(channels[1]) + bn2.activation = ACT_NONE + layers = [ + ("conv1", nn.Conv2d(in_channels, channels[0], 3, stride=stride, padding=dilation, bias=False, + dilation=dilation)), + ("bn1", norm_act(channels[0])), + ("conv2", nn.Conv2d(channels[0], channels[1], 3, stride=1, padding=dilation, bias=False, + dilation=dilation)), + ("bn2", bn2) + ] + if dropout is not None: + layers = layers[0:2] + [("dropout", dropout())] + layers[2:] + else: + bn3 = norm_act(channels[2]) + bn3.activation = ACT_NONE + layers = [ + ("conv1", nn.Conv2d(in_channels, channels[0], 1, stride=1, padding=0, bias=False)), + ("bn1", norm_act(channels[0])), + ("conv2", nn.Conv2d(channels[0], channels[1], 3, stride=stride, padding=dilation, bias=False, + groups=groups, dilation=dilation)), + ("bn2", norm_act(channels[1])), + ("conv3", nn.Conv2d(channels[1], channels[2], 1, stride=1, padding=0, bias=False)), + ("bn3", bn3) + ] + if dropout is not None: + layers = layers[0:4] + [("dropout", dropout())] + layers[4:] + self.convs = nn.Sequential(OrderedDict(layers)) + + if need_proj_conv: + self.proj_conv = nn.Conv2d(in_channels, channels[-1], 1, stride=stride, padding=0, bias=False) + self.proj_bn = norm_act(channels[-1]) + self.proj_bn.activation = ACT_NONE + + def forward(self, x): + if hasattr(self, "proj_conv"): + residual = self.proj_conv(x) + residual = self.proj_bn(residual) + else: + residual = x + x = self.convs(x) + residual + + if self.convs.bn1.activation == ACT_LEAKY_RELU: + return functional.leaky_relu(x, negative_slope=self.convs.bn1.slope, inplace=True) + elif self.convs.bn1.activation == ACT_ELU: + return functional.elu(x, inplace=True) + else: + return x + + +class IdentityResidualBlock(nn.Module): + def __init__(self, + in_channels, + channels, + stride=1, + dilation=1, + groups=1, + norm_act=ABN, + dropout=None): + """Configurable identity-mapping residual block + + Parameters + ---------- + in_channels : int + Number of input channels. + channels : list of int + Number of channels in the internal feature maps. Can either have two or three elements: if three construct + a residual block with two `3 x 3` convolutions, otherwise construct a bottleneck block with `1 x 1`, then + `3 x 3` then `1 x 1` convolutions. + stride : int + Stride of the first `3 x 3` convolution + dilation : int + Dilation to apply to the `3 x 3` convolutions. + groups : int + Number of convolution groups. This is used to create ResNeXt-style blocks and is only compatible with + bottleneck blocks. + norm_act : callable + Function to create normalization / activation Module. + dropout: callable + Function to create Dropout Module. + """ + super(IdentityResidualBlock, self).__init__() + + # Check parameters for inconsistencies + if len(channels) != 2 and len(channels) != 3: + raise ValueError("channels must contain either two or three values") + if len(channels) == 2 and groups != 1: + raise ValueError("groups > 1 are only valid if len(channels) == 3") + + is_bottleneck = len(channels) == 3 + need_proj_conv = stride != 1 or in_channels != channels[-1] + + self.bn1 = norm_act(in_channels) + if not is_bottleneck: + layers = [ + ("conv1", nn.Conv2d(in_channels, channels[0], 3, stride=stride, padding=dilation, bias=False, + dilation=dilation)), + ("bn2", norm_act(channels[0])), + ("conv2", nn.Conv2d(channels[0], channels[1], 3, stride=1, padding=dilation, bias=False, + dilation=dilation)) + ] + if dropout is not None: + layers = layers[0:2] + [("dropout", dropout())] + layers[2:] + else: + layers = [ + ("conv1", nn.Conv2d(in_channels, channels[0], 1, stride=stride, padding=0, bias=False)), + ("bn2", norm_act(channels[0])), + ("conv2", nn.Conv2d(channels[0], channels[1], 3, stride=1, padding=dilation, bias=False, + groups=groups, dilation=dilation)), + ("bn3", norm_act(channels[1])), + ("conv3", nn.Conv2d(channels[1], channels[2], 1, stride=1, padding=0, bias=False)) + ] + if dropout is not None: + layers = layers[0:4] + [("dropout", dropout())] + layers[4:] + self.convs = nn.Sequential(OrderedDict(layers)) + + if need_proj_conv: + self.proj_conv = nn.Conv2d(in_channels, channels[-1], 1, stride=stride, padding=0, bias=False) + + def forward(self, x): + if hasattr(self, "proj_conv"): + bn1 = self.bn1(x) + shortcut = self.proj_conv(bn1) + else: + shortcut = x.clone() + bn1 = self.bn1(x) + + out = self.convs(bn1) + out.add_(shortcut) + + return out diff --git a/app/models/schp/modules/src/checks.h b/app/models/schp/modules/src/checks.h new file mode 100644 index 0000000000000000000000000000000000000000..e761a6fe34d0789815b588eba7e3726026e0e868 --- /dev/null +++ b/app/models/schp/modules/src/checks.h @@ -0,0 +1,15 @@ +#pragma once + +#include <ATen/ATen.h> + +// Define AT_CHECK for old version of ATen where the same function was called AT_ASSERT +#ifndef AT_CHECK +#define AT_CHECK AT_ASSERT +#endif + +#define CHECK_CUDA(x) AT_CHECK((x).type().is_cuda(), #x " must be a CUDA tensor") +#define CHECK_CPU(x) AT_CHECK(!(x).type().is_cuda(), #x " must be a CPU tensor") +#define CHECK_CONTIGUOUS(x) AT_CHECK((x).is_contiguous(), #x " must be contiguous") + +#define CHECK_CUDA_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x) +#define CHECK_CPU_INPUT(x) CHECK_CPU(x); CHECK_CONTIGUOUS(x) \ No newline at end of file diff --git a/app/models/schp/modules/src/inplace_abn.cpp b/app/models/schp/modules/src/inplace_abn.cpp new file mode 100644 index 0000000000000000000000000000000000000000..e07ecbe2fef75085b64ff39a761044ab3400eb4e --- /dev/null +++ b/app/models/schp/modules/src/inplace_abn.cpp @@ -0,0 +1,117 @@ +#include <torch/extension.h> +#include <vector> +#include "inplace_abn.h" + +std::vector<at::Tensor> mean_var(at::Tensor x) { + if (x.is_cuda()) { +#ifdef WITH_CUDA + if (x.scalar_type() == at::ScalarType::Half) { + return mean_var_cuda_h(x); + } else { + return mean_var_cuda(x); + } +#else + AT_ERROR("Not compiled with CUDA support"); +#endif + } else { + return mean_var_cpu(x); + } +} + +at::Tensor forward(at::Tensor x, at::Tensor mean, at::Tensor var, at::Tensor weight, at::Tensor bias, + bool affine, float eps) { + if (x.is_cuda()) { +#ifdef WITH_CUDA + if (x.scalar_type() == at::ScalarType::Half) { + return forward_cuda_h(x, mean, var, weight, bias, affine, eps); + } else { + return forward_cuda(x, mean, var, weight, bias, affine, eps); + } +#else + AT_ERROR("Not compiled with CUDA support"); +#endif + } else { + return forward_cpu(x, mean, var, weight, bias, affine, eps); + } +} + +std::vector<at::Tensor> edz_eydz(at::Tensor z, at::Tensor dz, at::Tensor weight, at::Tensor bias, + bool affine, float eps) { + if (z.is_cuda()) { +#ifdef WITH_CUDA + if (z.scalar_type() == at::ScalarType::Half) { + return edz_eydz_cuda_h(z, dz, weight, bias, affine, eps); + } else { + return edz_eydz_cuda(z, dz, weight, bias, affine, eps); + } +#else + AT_ERROR("Not compiled with CUDA support"); +#endif + } else { + return edz_eydz_cpu(z, dz, weight, bias, affine, eps); + } +} + +at::Tensor backward(at::Tensor z, at::Tensor dz, at::Tensor var, at::Tensor weight, at::Tensor bias, + at::Tensor edz, at::Tensor eydz, bool affine, float eps) { + if (z.is_cuda()) { +#ifdef WITH_CUDA + if (z.scalar_type() == at::ScalarType::Half) { + return backward_cuda_h(z, dz, var, weight, bias, edz, eydz, affine, eps); + } else { + return backward_cuda(z, dz, var, weight, bias, edz, eydz, affine, eps); + } +#else + AT_ERROR("Not compiled with CUDA support"); +#endif + } else { + return backward_cpu(z, dz, var, weight, bias, edz, eydz, affine, eps); + } +} + +void leaky_relu_forward(at::Tensor z, float slope) { + at::leaky_relu_(z, slope); +} + +void leaky_relu_backward(at::Tensor z, at::Tensor dz, float slope) { + if (z.is_cuda()) { +#ifdef WITH_CUDA + if (z.scalar_type() == at::ScalarType::Half) { + return leaky_relu_backward_cuda_h(z, dz, slope); + } else { + return leaky_relu_backward_cuda(z, dz, slope); + } +#else + AT_ERROR("Not compiled with CUDA support"); +#endif + } else { + return leaky_relu_backward_cpu(z, dz, slope); + } +} + +void elu_forward(at::Tensor z) { + at::elu_(z); +} + +void elu_backward(at::Tensor z, at::Tensor dz) { + if (z.is_cuda()) { +#ifdef WITH_CUDA + return elu_backward_cuda(z, dz); +#else + AT_ERROR("Not compiled with CUDA support"); +#endif + } else { + return elu_backward_cpu(z, dz); + } +} + +PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { + m.def("mean_var", &mean_var, "Mean and variance computation"); + m.def("forward", &forward, "In-place forward computation"); + m.def("edz_eydz", &edz_eydz, "First part of backward computation"); + m.def("backward", &backward, "Second part of backward computation"); + m.def("leaky_relu_forward", &leaky_relu_forward, "Leaky relu forward computation"); + m.def("leaky_relu_backward", &leaky_relu_backward, "Leaky relu backward computation and inversion"); + m.def("elu_forward", &elu_forward, "Elu forward computation"); + m.def("elu_backward", &elu_backward, "Elu backward computation and inversion"); +} diff --git a/app/models/schp/modules/src/inplace_abn.h b/app/models/schp/modules/src/inplace_abn.h new file mode 100644 index 0000000000000000000000000000000000000000..17afd1196449ecb6376f28961e54b55e1537492f --- /dev/null +++ b/app/models/schp/modules/src/inplace_abn.h @@ -0,0 +1,88 @@ +#pragma once + +#include <ATen/ATen.h> + +#include <vector> + +std::vector<at::Tensor> mean_var_cpu(at::Tensor x); +std::vector<at::Tensor> mean_var_cuda(at::Tensor x); +std::vector<at::Tensor> mean_var_cuda_h(at::Tensor x); + +at::Tensor forward_cpu(at::Tensor x, at::Tensor mean, at::Tensor var, at::Tensor weight, at::Tensor bias, + bool affine, float eps); +at::Tensor forward_cuda(at::Tensor x, at::Tensor mean, at::Tensor var, at::Tensor weight, at::Tensor bias, + bool affine, float eps); +at::Tensor forward_cuda_h(at::Tensor x, at::Tensor mean, at::Tensor var, at::Tensor weight, at::Tensor bias, + bool affine, float eps); + +std::vector<at::Tensor> edz_eydz_cpu(at::Tensor z, at::Tensor dz, at::Tensor weight, at::Tensor bias, + bool affine, float eps); +std::vector<at::Tensor> edz_eydz_cuda(at::Tensor z, at::Tensor dz, at::Tensor weight, at::Tensor bias, + bool affine, float eps); +std::vector<at::Tensor> edz_eydz_cuda_h(at::Tensor z, at::Tensor dz, at::Tensor weight, at::Tensor bias, + bool affine, float eps); + +at::Tensor backward_cpu(at::Tensor z, at::Tensor dz, at::Tensor var, at::Tensor weight, at::Tensor bias, + at::Tensor edz, at::Tensor eydz, bool affine, float eps); +at::Tensor backward_cuda(at::Tensor z, at::Tensor dz, at::Tensor var, at::Tensor weight, at::Tensor bias, + at::Tensor edz, at::Tensor eydz, bool affine, float eps); +at::Tensor backward_cuda_h(at::Tensor z, at::Tensor dz, at::Tensor var, at::Tensor weight, at::Tensor bias, + at::Tensor edz, at::Tensor eydz, bool affine, float eps); + +void leaky_relu_backward_cpu(at::Tensor z, at::Tensor dz, float slope); +void leaky_relu_backward_cuda(at::Tensor z, at::Tensor dz, float slope); +void leaky_relu_backward_cuda_h(at::Tensor z, at::Tensor dz, float slope); + +void elu_backward_cpu(at::Tensor z, at::Tensor dz); +void elu_backward_cuda(at::Tensor z, at::Tensor dz); + +static void get_dims(at::Tensor x, int64_t& num, int64_t& chn, int64_t& sp) { + num = x.size(0); + chn = x.size(1); + sp = 1; + for (int64_t i = 2; i < x.ndimension(); ++i) + sp *= x.size(i); +} + +/* + * Specialized CUDA reduction functions for BN + */ +#ifdef __CUDACC__ + +#include "utils/cuda.cuh" + +template <typename T, typename Op> +__device__ T reduce(Op op, int plane, int N, int S) { + T sum = (T)0; + for (int batch = 0; batch < N; ++batch) { + for (int x = threadIdx.x; x < S; x += blockDim.x) { + sum += op(batch, plane, x); + } + } + + // sum over NumThreads within a warp + sum = warpSum(sum); + + // 'transpose', and reduce within warp again + __shared__ T shared[32]; + __syncthreads(); + if (threadIdx.x % WARP_SIZE == 0) { + shared[threadIdx.x / WARP_SIZE] = sum; + } + if (threadIdx.x >= blockDim.x / WARP_SIZE && threadIdx.x < WARP_SIZE) { + // zero out the other entries in shared + shared[threadIdx.x] = (T)0; + } + __syncthreads(); + if (threadIdx.x / WARP_SIZE == 0) { + sum = warpSum(shared[threadIdx.x]); + if (threadIdx.x == 0) { + shared[0] = sum; + } + } + __syncthreads(); + + // Everyone picks it up, should be broadcast into the whole gradInput + return shared[0]; +} +#endif diff --git a/app/models/schp/modules/src/inplace_abn_cpu.cpp b/app/models/schp/modules/src/inplace_abn_cpu.cpp new file mode 100644 index 0000000000000000000000000000000000000000..b044168edfc02abc87f8b9cb7969b91013dd42e7 --- /dev/null +++ b/app/models/schp/modules/src/inplace_abn_cpu.cpp @@ -0,0 +1,119 @@ +#include <ATen/ATen.h> + +#include <vector> + +#include "utils/checks.h" +#include "inplace_abn.h" + +at::Tensor reduce_sum(at::Tensor x) { + if (x.ndimension() == 2) { + return x.sum(0); + } else { + auto x_view = x.view({x.size(0), x.size(1), -1}); + return x_view.sum(-1).sum(0); + } +} + +at::Tensor broadcast_to(at::Tensor v, at::Tensor x) { + if (x.ndimension() == 2) { + return v; + } else { + std::vector<int64_t> broadcast_size = {1, -1}; + for (int64_t i = 2; i < x.ndimension(); ++i) + broadcast_size.push_back(1); + + return v.view(broadcast_size); + } +} + +int64_t count(at::Tensor x) { + int64_t count = x.size(0); + for (int64_t i = 2; i < x.ndimension(); ++i) + count *= x.size(i); + + return count; +} + +at::Tensor invert_affine(at::Tensor z, at::Tensor weight, at::Tensor bias, bool affine, float eps) { + if (affine) { + return (z - broadcast_to(bias, z)) / broadcast_to(at::abs(weight) + eps, z); + } else { + return z; + } +} + +std::vector<at::Tensor> mean_var_cpu(at::Tensor x) { + auto num = count(x); + auto mean = reduce_sum(x) / num; + auto diff = x - broadcast_to(mean, x); + auto var = reduce_sum(diff.pow(2)) / num; + + return {mean, var}; +} + +at::Tensor forward_cpu(at::Tensor x, at::Tensor mean, at::Tensor var, at::Tensor weight, at::Tensor bias, + bool affine, float eps) { + auto gamma = affine ? at::abs(weight) + eps : at::ones_like(var); + auto mul = at::rsqrt(var + eps) * gamma; + + x.sub_(broadcast_to(mean, x)); + x.mul_(broadcast_to(mul, x)); + if (affine) x.add_(broadcast_to(bias, x)); + + return x; +} + +std::vector<at::Tensor> edz_eydz_cpu(at::Tensor z, at::Tensor dz, at::Tensor weight, at::Tensor bias, + bool affine, float eps) { + auto edz = reduce_sum(dz); + auto y = invert_affine(z, weight, bias, affine, eps); + auto eydz = reduce_sum(y * dz); + + return {edz, eydz}; +} + +at::Tensor backward_cpu(at::Tensor z, at::Tensor dz, at::Tensor var, at::Tensor weight, at::Tensor bias, + at::Tensor edz, at::Tensor eydz, bool affine, float eps) { + auto y = invert_affine(z, weight, bias, affine, eps); + auto mul = affine ? at::rsqrt(var + eps) * (at::abs(weight) + eps) : at::rsqrt(var + eps); + + auto num = count(z); + auto dx = (dz - broadcast_to(edz / num, dz) - y * broadcast_to(eydz / num, dz)) * broadcast_to(mul, dz); + return dx; +} + +void leaky_relu_backward_cpu(at::Tensor z, at::Tensor dz, float slope) { + CHECK_CPU_INPUT(z); + CHECK_CPU_INPUT(dz); + + AT_DISPATCH_FLOATING_TYPES(z.scalar_type(), "leaky_relu_backward_cpu", ([&] { + int64_t count = z.numel(); + auto *_z = z.data<scalar_t>(); + auto *_dz = dz.data<scalar_t>(); + + for (int64_t i = 0; i < count; ++i) { + if (_z[i] < 0) { + _z[i] *= 1 / slope; + _dz[i] *= slope; + } + } + })); +} + +void elu_backward_cpu(at::Tensor z, at::Tensor dz) { + CHECK_CPU_INPUT(z); + CHECK_CPU_INPUT(dz); + + AT_DISPATCH_FLOATING_TYPES(z.scalar_type(), "elu_backward_cpu", ([&] { + int64_t count = z.numel(); + auto *_z = z.data<scalar_t>(); + auto *_dz = dz.data<scalar_t>(); + + for (int64_t i = 0; i < count; ++i) { + if (_z[i] < 0) { + _z[i] = log1p(_z[i]); + _dz[i] *= (_z[i] + 1.f); + } + } + })); +} diff --git a/app/models/schp/modules/src/inplace_abn_cuda.cu b/app/models/schp/modules/src/inplace_abn_cuda.cu new file mode 100644 index 0000000000000000000000000000000000000000..b157b06d47173d1645c6a40c89f564b737e84d43 --- /dev/null +++ b/app/models/schp/modules/src/inplace_abn_cuda.cu @@ -0,0 +1,333 @@ +#include <ATen/ATen.h> + +#include <thrust/device_ptr.h> +#include <thrust/transform.h> + +#include <vector> + +#include "utils/checks.h" +#include "utils/cuda.cuh" +#include "inplace_abn.h" + +#include <ATen/cuda/CUDAContext.h> + +// Operations for reduce +template<typename T> +struct SumOp { + __device__ SumOp(const T *t, int c, int s) + : tensor(t), chn(c), sp(s) {} + __device__ __forceinline__ T operator()(int batch, int plane, int n) { + return tensor[(batch * chn + plane) * sp + n]; + } + const T *tensor; + const int chn; + const int sp; +}; + +template<typename T> +struct VarOp { + __device__ VarOp(T m, const T *t, int c, int s) + : mean(m), tensor(t), chn(c), sp(s) {} + __device__ __forceinline__ T operator()(int batch, int plane, int n) { + T val = tensor[(batch * chn + plane) * sp + n]; + return (val - mean) * (val - mean); + } + const T mean; + const T *tensor; + const int chn; + const int sp; +}; + +template<typename T> +struct GradOp { + __device__ GradOp(T _weight, T _bias, const T *_z, const T *_dz, int c, int s) + : weight(_weight), bias(_bias), z(_z), dz(_dz), chn(c), sp(s) {} + __device__ __forceinline__ Pair<T> operator()(int batch, int plane, int n) { + T _y = (z[(batch * chn + plane) * sp + n] - bias) / weight; + T _dz = dz[(batch * chn + plane) * sp + n]; + return Pair<T>(_dz, _y * _dz); + } + const T weight; + const T bias; + const T *z; + const T *dz; + const int chn; + const int sp; +}; + +/*********** + * mean_var + ***********/ + +template<typename T> +__global__ void mean_var_kernel(const T *x, T *mean, T *var, int num, int chn, int sp) { + int plane = blockIdx.x; + T norm = T(1) / T(num * sp); + + T _mean = reduce<T, SumOp<T>>(SumOp<T>(x, chn, sp), plane, num, sp) * norm; + __syncthreads(); + T _var = reduce<T, VarOp<T>>(VarOp<T>(_mean, x, chn, sp), plane, num, sp) * norm; + + if (threadIdx.x == 0) { + mean[plane] = _mean; + var[plane] = _var; + } +} + +std::vector<at::Tensor> mean_var_cuda(at::Tensor x) { + CHECK_CUDA_INPUT(x); + + // Extract dimensions + int64_t num, chn, sp; + get_dims(x, num, chn, sp); + + // Prepare output tensors + auto mean = at::empty({chn}, x.options()); + auto var = at::empty({chn}, x.options()); + + // Run kernel + dim3 blocks(chn); + dim3 threads(getNumThreads(sp)); + auto stream = at::cuda::getCurrentCUDAStream(); + AT_DISPATCH_FLOATING_TYPES(x.type(), "mean_var_cuda", ([&] { + mean_var_kernel<scalar_t><<<blocks, threads, 0, stream>>>( + x.data<scalar_t>(), + mean.data<scalar_t>(), + var.data<scalar_t>(), + num, chn, sp); + })); + + return {mean, var}; +} + +/********** + * forward + **********/ + +template<typename T> +__global__ void forward_kernel(T *x, const T *mean, const T *var, const T *weight, const T *bias, + bool affine, float eps, int num, int chn, int sp) { + int plane = blockIdx.x; + + T _mean = mean[plane]; + T _var = var[plane]; + T _weight = affine ? abs(weight[plane]) + eps : T(1); + T _bias = affine ? bias[plane] : T(0); + + T mul = rsqrt(_var + eps) * _weight; + + for (int batch = 0; batch < num; ++batch) { + for (int n = threadIdx.x; n < sp; n += blockDim.x) { + T _x = x[(batch * chn + plane) * sp + n]; + T _y = (_x - _mean) * mul + _bias; + + x[(batch * chn + plane) * sp + n] = _y; + } + } +} + +at::Tensor forward_cuda(at::Tensor x, at::Tensor mean, at::Tensor var, at::Tensor weight, at::Tensor bias, + bool affine, float eps) { + CHECK_CUDA_INPUT(x); + CHECK_CUDA_INPUT(mean); + CHECK_CUDA_INPUT(var); + CHECK_CUDA_INPUT(weight); + CHECK_CUDA_INPUT(bias); + + // Extract dimensions + int64_t num, chn, sp; + get_dims(x, num, chn, sp); + + // Run kernel + dim3 blocks(chn); + dim3 threads(getNumThreads(sp)); + auto stream = at::cuda::getCurrentCUDAStream(); + AT_DISPATCH_FLOATING_TYPES(x.type(), "forward_cuda", ([&] { + forward_kernel<scalar_t><<<blocks, threads, 0, stream>>>( + x.data<scalar_t>(), + mean.data<scalar_t>(), + var.data<scalar_t>(), + weight.data<scalar_t>(), + bias.data<scalar_t>(), + affine, eps, num, chn, sp); + })); + + return x; +} + +/*********** + * edz_eydz + ***********/ + +template<typename T> +__global__ void edz_eydz_kernel(const T *z, const T *dz, const T *weight, const T *bias, + T *edz, T *eydz, bool affine, float eps, int num, int chn, int sp) { + int plane = blockIdx.x; + + T _weight = affine ? abs(weight[plane]) + eps : 1.f; + T _bias = affine ? bias[plane] : 0.f; + + Pair<T> res = reduce<Pair<T>, GradOp<T>>(GradOp<T>(_weight, _bias, z, dz, chn, sp), plane, num, sp); + __syncthreads(); + + if (threadIdx.x == 0) { + edz[plane] = res.v1; + eydz[plane] = res.v2; + } +} + +std::vector<at::Tensor> edz_eydz_cuda(at::Tensor z, at::Tensor dz, at::Tensor weight, at::Tensor bias, + bool affine, float eps) { + CHECK_CUDA_INPUT(z); + CHECK_CUDA_INPUT(dz); + CHECK_CUDA_INPUT(weight); + CHECK_CUDA_INPUT(bias); + + // Extract dimensions + int64_t num, chn, sp; + get_dims(z, num, chn, sp); + + auto edz = at::empty({chn}, z.options()); + auto eydz = at::empty({chn}, z.options()); + + // Run kernel + dim3 blocks(chn); + dim3 threads(getNumThreads(sp)); + auto stream = at::cuda::getCurrentCUDAStream(); + AT_DISPATCH_FLOATING_TYPES(z.type(), "edz_eydz_cuda", ([&] { + edz_eydz_kernel<scalar_t><<<blocks, threads, 0, stream>>>( + z.data<scalar_t>(), + dz.data<scalar_t>(), + weight.data<scalar_t>(), + bias.data<scalar_t>(), + edz.data<scalar_t>(), + eydz.data<scalar_t>(), + affine, eps, num, chn, sp); + })); + + return {edz, eydz}; +} + +/*********** + * backward + ***********/ + +template<typename T> +__global__ void backward_kernel(const T *z, const T *dz, const T *var, const T *weight, const T *bias, const T *edz, + const T *eydz, T *dx, bool affine, float eps, int num, int chn, int sp) { + int plane = blockIdx.x; + + T _weight = affine ? abs(weight[plane]) + eps : 1.f; + T _bias = affine ? bias[plane] : 0.f; + T _var = var[plane]; + T _edz = edz[plane]; + T _eydz = eydz[plane]; + + T _mul = _weight * rsqrt(_var + eps); + T count = T(num * sp); + + for (int batch = 0; batch < num; ++batch) { + for (int n = threadIdx.x; n < sp; n += blockDim.x) { + T _dz = dz[(batch * chn + plane) * sp + n]; + T _y = (z[(batch * chn + plane) * sp + n] - _bias) / _weight; + + dx[(batch * chn + plane) * sp + n] = (_dz - _edz / count - _y * _eydz / count) * _mul; + } + } +} + +at::Tensor backward_cuda(at::Tensor z, at::Tensor dz, at::Tensor var, at::Tensor weight, at::Tensor bias, + at::Tensor edz, at::Tensor eydz, bool affine, float eps) { + CHECK_CUDA_INPUT(z); + CHECK_CUDA_INPUT(dz); + CHECK_CUDA_INPUT(var); + CHECK_CUDA_INPUT(weight); + CHECK_CUDA_INPUT(bias); + CHECK_CUDA_INPUT(edz); + CHECK_CUDA_INPUT(eydz); + + // Extract dimensions + int64_t num, chn, sp; + get_dims(z, num, chn, sp); + + auto dx = at::zeros_like(z); + + // Run kernel + dim3 blocks(chn); + dim3 threads(getNumThreads(sp)); + auto stream = at::cuda::getCurrentCUDAStream(); + AT_DISPATCH_FLOATING_TYPES(z.type(), "backward_cuda", ([&] { + backward_kernel<scalar_t><<<blocks, threads, 0, stream>>>( + z.data<scalar_t>(), + dz.data<scalar_t>(), + var.data<scalar_t>(), + weight.data<scalar_t>(), + bias.data<scalar_t>(), + edz.data<scalar_t>(), + eydz.data<scalar_t>(), + dx.data<scalar_t>(), + affine, eps, num, chn, sp); + })); + + return dx; +} + +/************** + * activations + **************/ + +template<typename T> +inline void leaky_relu_backward_impl(T *z, T *dz, float slope, int64_t count) { + // Create thrust pointers + thrust::device_ptr<T> th_z = thrust::device_pointer_cast(z); + thrust::device_ptr<T> th_dz = thrust::device_pointer_cast(dz); + + auto stream = at::cuda::getCurrentCUDAStream(); + thrust::transform_if(thrust::cuda::par.on(stream), + th_dz, th_dz + count, th_z, th_dz, + [slope] __device__ (const T& dz) { return dz * slope; }, + [] __device__ (const T& z) { return z < 0; }); + thrust::transform_if(thrust::cuda::par.on(stream), + th_z, th_z + count, th_z, + [slope] __device__ (const T& z) { return z / slope; }, + [] __device__ (const T& z) { return z < 0; }); +} + +void leaky_relu_backward_cuda(at::Tensor z, at::Tensor dz, float slope) { + CHECK_CUDA_INPUT(z); + CHECK_CUDA_INPUT(dz); + + int64_t count = z.numel(); + + AT_DISPATCH_FLOATING_TYPES(z.type(), "leaky_relu_backward_cuda", ([&] { + leaky_relu_backward_impl<scalar_t>(z.data<scalar_t>(), dz.data<scalar_t>(), slope, count); + })); +} + +template<typename T> +inline void elu_backward_impl(T *z, T *dz, int64_t count) { + // Create thrust pointers + thrust::device_ptr<T> th_z = thrust::device_pointer_cast(z); + thrust::device_ptr<T> th_dz = thrust::device_pointer_cast(dz); + + auto stream = at::cuda::getCurrentCUDAStream(); + thrust::transform_if(thrust::cuda::par.on(stream), + th_dz, th_dz + count, th_z, th_z, th_dz, + [] __device__ (const T& dz, const T& z) { return dz * (z + 1.); }, + [] __device__ (const T& z) { return z < 0; }); + thrust::transform_if(thrust::cuda::par.on(stream), + th_z, th_z + count, th_z, + [] __device__ (const T& z) { return log1p(z); }, + [] __device__ (const T& z) { return z < 0; }); +} + +void elu_backward_cuda(at::Tensor z, at::Tensor dz) { + CHECK_CUDA_INPUT(z); + CHECK_CUDA_INPUT(dz); + + int64_t count = z.numel(); + + AT_DISPATCH_FLOATING_TYPES(z.type(), "leaky_relu_backward_cuda", ([&] { + elu_backward_impl<scalar_t>(z.data<scalar_t>(), dz.data<scalar_t>(), count); + })); +} diff --git a/app/models/schp/modules/src/inplace_abn_cuda_half.cu b/app/models/schp/modules/src/inplace_abn_cuda_half.cu new file mode 100644 index 0000000000000000000000000000000000000000..bb63e73f9d90179e5bd5dae5579c4844da9c25e2 --- /dev/null +++ b/app/models/schp/modules/src/inplace_abn_cuda_half.cu @@ -0,0 +1,275 @@ +#include <ATen/ATen.h> + +#include <cuda_fp16.h> + +#include <vector> + +#include "utils/checks.h" +#include "utils/cuda.cuh" +#include "inplace_abn.h" + +#include <ATen/cuda/CUDAContext.h> + +// Operations for reduce +struct SumOpH { + __device__ SumOpH(const half *t, int c, int s) + : tensor(t), chn(c), sp(s) {} + __device__ __forceinline__ float operator()(int batch, int plane, int n) { + return __half2float(tensor[(batch * chn + plane) * sp + n]); + } + const half *tensor; + const int chn; + const int sp; +}; + +struct VarOpH { + __device__ VarOpH(float m, const half *t, int c, int s) + : mean(m), tensor(t), chn(c), sp(s) {} + __device__ __forceinline__ float operator()(int batch, int plane, int n) { + const auto t = __half2float(tensor[(batch * chn + plane) * sp + n]); + return (t - mean) * (t - mean); + } + const float mean; + const half *tensor; + const int chn; + const int sp; +}; + +struct GradOpH { + __device__ GradOpH(float _weight, float _bias, const half *_z, const half *_dz, int c, int s) + : weight(_weight), bias(_bias), z(_z), dz(_dz), chn(c), sp(s) {} + __device__ __forceinline__ Pair<float> operator()(int batch, int plane, int n) { + float _y = (__half2float(z[(batch * chn + plane) * sp + n]) - bias) / weight; + float _dz = __half2float(dz[(batch * chn + plane) * sp + n]); + return Pair<float>(_dz, _y * _dz); + } + const float weight; + const float bias; + const half *z; + const half *dz; + const int chn; + const int sp; +}; + +/*********** + * mean_var + ***********/ + +__global__ void mean_var_kernel_h(const half *x, float *mean, float *var, int num, int chn, int sp) { + int plane = blockIdx.x; + float norm = 1.f / static_cast<float>(num * sp); + + float _mean = reduce<float, SumOpH>(SumOpH(x, chn, sp), plane, num, sp) * norm; + __syncthreads(); + float _var = reduce<float, VarOpH>(VarOpH(_mean, x, chn, sp), plane, num, sp) * norm; + + if (threadIdx.x == 0) { + mean[plane] = _mean; + var[plane] = _var; + } +} + +std::vector<at::Tensor> mean_var_cuda_h(at::Tensor x) { + CHECK_CUDA_INPUT(x); + + // Extract dimensions + int64_t num, chn, sp; + get_dims(x, num, chn, sp); + + // Prepare output tensors + auto mean = at::empty({chn},x.options().dtype(at::kFloat)); + auto var = at::empty({chn},x.options().dtype(at::kFloat)); + + // Run kernel + dim3 blocks(chn); + dim3 threads(getNumThreads(sp)); + auto stream = at::cuda::getCurrentCUDAStream(); + mean_var_kernel_h<<<blocks, threads, 0, stream>>>( + reinterpret_cast<half*>(x.data<at::Half>()), + mean.data<float>(), + var.data<float>(), + num, chn, sp); + + return {mean, var}; +} + +/********** + * forward + **********/ + +__global__ void forward_kernel_h(half *x, const float *mean, const float *var, const float *weight, const float *bias, + bool affine, float eps, int num, int chn, int sp) { + int plane = blockIdx.x; + + const float _mean = mean[plane]; + const float _var = var[plane]; + const float _weight = affine ? abs(weight[plane]) + eps : 1.f; + const float _bias = affine ? bias[plane] : 0.f; + + const float mul = rsqrt(_var + eps) * _weight; + + for (int batch = 0; batch < num; ++batch) { + for (int n = threadIdx.x; n < sp; n += blockDim.x) { + half *x_ptr = x + (batch * chn + plane) * sp + n; + float _x = __half2float(*x_ptr); + float _y = (_x - _mean) * mul + _bias; + + *x_ptr = __float2half(_y); + } + } +} + +at::Tensor forward_cuda_h(at::Tensor x, at::Tensor mean, at::Tensor var, at::Tensor weight, at::Tensor bias, + bool affine, float eps) { + CHECK_CUDA_INPUT(x); + CHECK_CUDA_INPUT(mean); + CHECK_CUDA_INPUT(var); + CHECK_CUDA_INPUT(weight); + CHECK_CUDA_INPUT(bias); + + // Extract dimensions + int64_t num, chn, sp; + get_dims(x, num, chn, sp); + + // Run kernel + dim3 blocks(chn); + dim3 threads(getNumThreads(sp)); + auto stream = at::cuda::getCurrentCUDAStream(); + forward_kernel_h<<<blocks, threads, 0, stream>>>( + reinterpret_cast<half*>(x.data<at::Half>()), + mean.data<float>(), + var.data<float>(), + weight.data<float>(), + bias.data<float>(), + affine, eps, num, chn, sp); + + return x; +} + +__global__ void edz_eydz_kernel_h(const half *z, const half *dz, const float *weight, const float *bias, + float *edz, float *eydz, bool affine, float eps, int num, int chn, int sp) { + int plane = blockIdx.x; + + float _weight = affine ? abs(weight[plane]) + eps : 1.f; + float _bias = affine ? bias[plane] : 0.f; + + Pair<float> res = reduce<Pair<float>, GradOpH>(GradOpH(_weight, _bias, z, dz, chn, sp), plane, num, sp); + __syncthreads(); + + if (threadIdx.x == 0) { + edz[plane] = res.v1; + eydz[plane] = res.v2; + } +} + +std::vector<at::Tensor> edz_eydz_cuda_h(at::Tensor z, at::Tensor dz, at::Tensor weight, at::Tensor bias, + bool affine, float eps) { + CHECK_CUDA_INPUT(z); + CHECK_CUDA_INPUT(dz); + CHECK_CUDA_INPUT(weight); + CHECK_CUDA_INPUT(bias); + + // Extract dimensions + int64_t num, chn, sp; + get_dims(z, num, chn, sp); + + auto edz = at::empty({chn},z.options().dtype(at::kFloat)); + auto eydz = at::empty({chn},z.options().dtype(at::kFloat)); + + // Run kernel + dim3 blocks(chn); + dim3 threads(getNumThreads(sp)); + auto stream = at::cuda::getCurrentCUDAStream(); + edz_eydz_kernel_h<<<blocks, threads, 0, stream>>>( + reinterpret_cast<half*>(z.data<at::Half>()), + reinterpret_cast<half*>(dz.data<at::Half>()), + weight.data<float>(), + bias.data<float>(), + edz.data<float>(), + eydz.data<float>(), + affine, eps, num, chn, sp); + + return {edz, eydz}; +} + +__global__ void backward_kernel_h(const half *z, const half *dz, const float *var, const float *weight, const float *bias, const float *edz, + const float *eydz, half *dx, bool affine, float eps, int num, int chn, int sp) { + int plane = blockIdx.x; + + float _weight = affine ? abs(weight[plane]) + eps : 1.f; + float _bias = affine ? bias[plane] : 0.f; + float _var = var[plane]; + float _edz = edz[plane]; + float _eydz = eydz[plane]; + + float _mul = _weight * rsqrt(_var + eps); + float count = float(num * sp); + + for (int batch = 0; batch < num; ++batch) { + for (int n = threadIdx.x; n < sp; n += blockDim.x) { + float _dz = __half2float(dz[(batch * chn + plane) * sp + n]); + float _y = (__half2float(z[(batch * chn + plane) * sp + n]) - _bias) / _weight; + + dx[(batch * chn + plane) * sp + n] = __float2half((_dz - _edz / count - _y * _eydz / count) * _mul); + } + } +} + +at::Tensor backward_cuda_h(at::Tensor z, at::Tensor dz, at::Tensor var, at::Tensor weight, at::Tensor bias, + at::Tensor edz, at::Tensor eydz, bool affine, float eps) { + CHECK_CUDA_INPUT(z); + CHECK_CUDA_INPUT(dz); + CHECK_CUDA_INPUT(var); + CHECK_CUDA_INPUT(weight); + CHECK_CUDA_INPUT(bias); + CHECK_CUDA_INPUT(edz); + CHECK_CUDA_INPUT(eydz); + + // Extract dimensions + int64_t num, chn, sp; + get_dims(z, num, chn, sp); + + auto dx = at::zeros_like(z); + + // Run kernel + dim3 blocks(chn); + dim3 threads(getNumThreads(sp)); + auto stream = at::cuda::getCurrentCUDAStream(); + backward_kernel_h<<<blocks, threads, 0, stream>>>( + reinterpret_cast<half*>(z.data<at::Half>()), + reinterpret_cast<half*>(dz.data<at::Half>()), + var.data<float>(), + weight.data<float>(), + bias.data<float>(), + edz.data<float>(), + eydz.data<float>(), + reinterpret_cast<half*>(dx.data<at::Half>()), + affine, eps, num, chn, sp); + + return dx; +} + +__global__ void leaky_relu_backward_impl_h(half *z, half *dz, float slope, int64_t count) { + for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < count; i += blockDim.x * gridDim.x){ + float _z = __half2float(z[i]); + if (_z < 0) { + dz[i] = __float2half(__half2float(dz[i]) * slope); + z[i] = __float2half(_z / slope); + } + } +} + +void leaky_relu_backward_cuda_h(at::Tensor z, at::Tensor dz, float slope) { + CHECK_CUDA_INPUT(z); + CHECK_CUDA_INPUT(dz); + + int64_t count = z.numel(); + dim3 threads(getNumThreads(count)); + dim3 blocks = (count + threads.x - 1) / threads.x; + auto stream = at::cuda::getCurrentCUDAStream(); + leaky_relu_backward_impl_h<<<blocks, threads, 0, stream>>>( + reinterpret_cast<half*>(z.data<at::Half>()), + reinterpret_cast<half*>(dz.data<at::Half>()), + slope, count); +} + diff --git a/app/models/schp/modules/src/utils/checks.h b/app/models/schp/modules/src/utils/checks.h new file mode 100644 index 0000000000000000000000000000000000000000..e761a6fe34d0789815b588eba7e3726026e0e868 --- /dev/null +++ b/app/models/schp/modules/src/utils/checks.h @@ -0,0 +1,15 @@ +#pragma once + +#include <ATen/ATen.h> + +// Define AT_CHECK for old version of ATen where the same function was called AT_ASSERT +#ifndef AT_CHECK +#define AT_CHECK AT_ASSERT +#endif + +#define CHECK_CUDA(x) AT_CHECK((x).type().is_cuda(), #x " must be a CUDA tensor") +#define CHECK_CPU(x) AT_CHECK(!(x).type().is_cuda(), #x " must be a CPU tensor") +#define CHECK_CONTIGUOUS(x) AT_CHECK((x).is_contiguous(), #x " must be contiguous") + +#define CHECK_CUDA_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x) +#define CHECK_CPU_INPUT(x) CHECK_CPU(x); CHECK_CONTIGUOUS(x) \ No newline at end of file diff --git a/app/models/schp/modules/src/utils/common.h b/app/models/schp/modules/src/utils/common.h new file mode 100644 index 0000000000000000000000000000000000000000..e8403eef8a233b75dd4bb353c16486fe1be2039a --- /dev/null +++ b/app/models/schp/modules/src/utils/common.h @@ -0,0 +1,49 @@ +#pragma once + +#include <ATen/ATen.h> + +/* + * Functions to share code between CPU and GPU + */ + +#ifdef __CUDACC__ +// CUDA versions + +#define HOST_DEVICE __host__ __device__ +#define INLINE_HOST_DEVICE __host__ __device__ inline +#define FLOOR(x) floor(x) + +#if __CUDA_ARCH__ >= 600 +// Recent compute capabilities have block-level atomicAdd for all data types, so we use that +#define ACCUM(x,y) atomicAdd_block(&(x),(y)) +#else +// Older architectures don't have block-level atomicAdd, nor atomicAdd for doubles, so we defer to atomicAdd for float +// and use the known atomicCAS-based implementation for double +template<typename data_t> +__device__ inline data_t atomic_add(data_t *address, data_t val) { + return atomicAdd(address, val); +} + +template<> +__device__ inline double atomic_add(double *address, double val) { + unsigned long long int* address_as_ull = (unsigned long long int*)address; + unsigned long long int old = *address_as_ull, assumed; + do { + assumed = old; + old = atomicCAS(address_as_ull, assumed, __double_as_longlong(val + __longlong_as_double(assumed))); + } while (assumed != old); + return __longlong_as_double(old); +} + +#define ACCUM(x,y) atomic_add(&(x),(y)) +#endif // #if __CUDA_ARCH__ >= 600 + +#else +// CPU versions + +#define HOST_DEVICE +#define INLINE_HOST_DEVICE inline +#define FLOOR(x) std::floor(x) +#define ACCUM(x,y) (x) += (y) + +#endif // #ifdef __CUDACC__ \ No newline at end of file diff --git a/app/models/schp/modules/src/utils/cuda.cuh b/app/models/schp/modules/src/utils/cuda.cuh new file mode 100644 index 0000000000000000000000000000000000000000..60c0023835e02c5f7c539c28ac07b75b72df394b --- /dev/null +++ b/app/models/schp/modules/src/utils/cuda.cuh @@ -0,0 +1,71 @@ +#pragma once + +/* + * General settings and functions + */ +const int WARP_SIZE = 32; +const int MAX_BLOCK_SIZE = 1024; + +static int getNumThreads(int nElem) { + int threadSizes[6] = {32, 64, 128, 256, 512, MAX_BLOCK_SIZE}; + for (int i = 0; i < 6; ++i) { + if (nElem <= threadSizes[i]) { + return threadSizes[i]; + } + } + return MAX_BLOCK_SIZE; +} + +/* + * Reduction utilities + */ +template <typename T> +__device__ __forceinline__ T WARP_SHFL_XOR(T value, int laneMask, int width = warpSize, + unsigned int mask = 0xffffffff) { +#if CUDART_VERSION >= 9000 + return __shfl_xor_sync(mask, value, laneMask, width); +#else + return __shfl_xor(value, laneMask, width); +#endif +} + +__device__ __forceinline__ int getMSB(int val) { return 31 - __clz(val); } + +template<typename T> +struct Pair { + T v1, v2; + __device__ Pair() {} + __device__ Pair(T _v1, T _v2) : v1(_v1), v2(_v2) {} + __device__ Pair(T v) : v1(v), v2(v) {} + __device__ Pair(int v) : v1(v), v2(v) {} + __device__ Pair &operator+=(const Pair<T> &a) { + v1 += a.v1; + v2 += a.v2; + return *this; + } +}; + +template<typename T> +static __device__ __forceinline__ T warpSum(T val) { +#if __CUDA_ARCH__ >= 300 + for (int i = 0; i < getMSB(WARP_SIZE); ++i) { + val += WARP_SHFL_XOR(val, 1 << i, WARP_SIZE); + } +#else + __shared__ T values[MAX_BLOCK_SIZE]; + values[threadIdx.x] = val; + __threadfence_block(); + const int base = (threadIdx.x / WARP_SIZE) * WARP_SIZE; + for (int i = 1; i < WARP_SIZE; i++) { + val += values[base + ((i + threadIdx.x) % WARP_SIZE)]; + } +#endif + return val; +} + +template<typename T> +static __device__ __forceinline__ Pair<T> warpSum(Pair<T> value) { + value.v1 = warpSum(value.v1); + value.v2 = warpSum(value.v2); + return value; +} \ No newline at end of file diff --git a/app/models/schp/networks/AugmentCE2P.py b/app/models/schp/networks/AugmentCE2P.py new file mode 100644 index 0000000000000000000000000000000000000000..2d20b3600b152eeed688d1668f1cad782e3f3b5b --- /dev/null +++ b/app/models/schp/networks/AugmentCE2P.py @@ -0,0 +1,339 @@ +#!/usr/bin/env python +# -*- encoding: utf-8 -*- + +""" +@Author : Peike Li +@Contact : peike.li@yahoo.com +@File : AugmentCE2P.py +@Time : 8/4/19 3:35 PM +@Desc : +@License : This source code is licensed under the license found in the + LICENSE file in the root directory of this source tree. +""" + +import functools + +import torch +import torch.nn as nn +from torch.nn import functional as F + +from app.models.schp.modules import InPlaceABNSync + +# Note here we adopt the InplaceABNSync implementation from https://github.com/mapillary/inplace_abn +# By default, the InplaceABNSync module contains a BatchNorm Layer and a LeakyReLu layer + +BatchNorm2d = functools.partial(InPlaceABNSync, activation='none') + +affine_par = True + +pretrained_settings = { + 'resnet101': { + 'imagenet': { + 'input_space': 'BGR', + 'input_size': [3, 224, 224], + 'input_range': [0, 1], + 'mean': [0.406, 0.456, 0.485], + 'std': [0.225, 0.224, 0.229], + 'num_classes': 1000 + } + }, +} + + +def conv3x3(in_planes, out_planes, stride=1): + "3x3 convolution with padding" + return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, + padding=1, bias=False) + + +class Bottleneck(nn.Module): + expansion = 4 + + def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, fist_dilation=1, multi_grid=1): + super(Bottleneck, self).__init__() + self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) + self.bn1 = BatchNorm2d(planes) + self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, + padding=dilation * multi_grid, dilation=dilation * multi_grid, bias=False) + self.bn2 = BatchNorm2d(planes) + self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) + self.bn3 = BatchNorm2d(planes * 4) + self.relu = nn.ReLU(inplace=False) + self.relu_inplace = nn.ReLU(inplace=True) + self.downsample = downsample + self.dilation = dilation + self.stride = stride + + def forward(self, x): + residual = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + out = self.relu(out) + + out = self.conv3(out) + out = self.bn3(out) + + if self.downsample is not None: + residual = self.downsample(x) + + out = out + residual + out = self.relu_inplace(out) + + return out + + +class PSPModule(nn.Module): + """ + Reference: + Zhao, Hengshuang, et al. *"Pyramid scene parsing network."* + """ + + def __init__(self, features, out_features=512, sizes=(1, 2, 3, 6)): + super(PSPModule, self).__init__() + + self.stages = [] + self.stages = nn.ModuleList([self._make_stage(features, out_features, size) for size in sizes]) + self.bottleneck = nn.Sequential( + nn.Conv2d(features + len(sizes) * out_features, out_features, kernel_size=3, padding=1, dilation=1, + bias=False), + InPlaceABNSync(out_features), + ) + + def _make_stage(self, features, out_features, size): + prior = nn.AdaptiveAvgPool2d(output_size=(size, size)) + conv = nn.Conv2d(features, out_features, kernel_size=1, bias=False) + bn = InPlaceABNSync(out_features) + return nn.Sequential(prior, conv, bn) + + def forward(self, feats): + h, w = feats.size(2), feats.size(3) + priors = [F.interpolate(input=stage(feats), size=(h, w), mode='bilinear', align_corners=True) for stage in + self.stages] + [feats] + bottle = self.bottleneck(torch.cat(priors, 1)) + return bottle + + +class ASPPModule(nn.Module): + """ + Reference: + Chen, Liang-Chieh, et al. *"Rethinking Atrous Convolution for Semantic Image Segmentation."* + """ + + def __init__(self, features, inner_features=256, out_features=512, dilations=(12, 24, 36)): + super(ASPPModule, self).__init__() + + self.conv1 = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)), + nn.Conv2d(features, inner_features, kernel_size=1, padding=0, dilation=1, + bias=False), + InPlaceABNSync(inner_features)) + self.conv2 = nn.Sequential( + nn.Conv2d(features, inner_features, kernel_size=1, padding=0, dilation=1, bias=False), + InPlaceABNSync(inner_features)) + self.conv3 = nn.Sequential( + nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[0], dilation=dilations[0], bias=False), + InPlaceABNSync(inner_features)) + self.conv4 = nn.Sequential( + nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[1], dilation=dilations[1], bias=False), + InPlaceABNSync(inner_features)) + self.conv5 = nn.Sequential( + nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[2], dilation=dilations[2], bias=False), + InPlaceABNSync(inner_features)) + + self.bottleneck = nn.Sequential( + nn.Conv2d(inner_features * 5, out_features, kernel_size=1, padding=0, dilation=1, bias=False), + InPlaceABNSync(out_features), + nn.Dropout2d(0.1) + ) + + def forward(self, x): + _, _, h, w = x.size() + + feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True) + + feat2 = self.conv2(x) + feat3 = self.conv3(x) + feat4 = self.conv4(x) + feat5 = self.conv5(x) + out = torch.cat((feat1, feat2, feat3, feat4, feat5), 1) + + bottle = self.bottleneck(out) + return bottle + + +class Edge_Module(nn.Module): + """ + Edge Learning Branch + """ + + def __init__(self, in_fea=[256, 512, 1024], mid_fea=256, out_fea=2): + super(Edge_Module, self).__init__() + + self.conv1 = nn.Sequential( + nn.Conv2d(in_fea[0], mid_fea, kernel_size=1, padding=0, dilation=1, bias=False), + InPlaceABNSync(mid_fea) + ) + self.conv2 = nn.Sequential( + nn.Conv2d(in_fea[1], mid_fea, kernel_size=1, padding=0, dilation=1, bias=False), + InPlaceABNSync(mid_fea) + ) + self.conv3 = nn.Sequential( + nn.Conv2d(in_fea[2], mid_fea, kernel_size=1, padding=0, dilation=1, bias=False), + InPlaceABNSync(mid_fea) + ) + self.conv4 = nn.Conv2d(mid_fea, out_fea, kernel_size=3, padding=1, dilation=1, bias=True) + self.conv5 = nn.Conv2d(out_fea * 3, out_fea, kernel_size=1, padding=0, dilation=1, bias=True) + + def forward(self, x1, x2, x3): + _, _, h, w = x1.size() + + edge1_fea = self.conv1(x1) + edge1 = self.conv4(edge1_fea) + edge2_fea = self.conv2(x2) + edge2 = self.conv4(edge2_fea) + edge3_fea = self.conv3(x3) + edge3 = self.conv4(edge3_fea) + + edge2_fea = F.interpolate(edge2_fea, size=(h, w), mode='bilinear', align_corners=True) + edge3_fea = F.interpolate(edge3_fea, size=(h, w), mode='bilinear', align_corners=True) + edge2 = F.interpolate(edge2, size=(h, w), mode='bilinear', align_corners=True) + edge3 = F.interpolate(edge3, size=(h, w), mode='bilinear', align_corners=True) + + edge = torch.cat([edge1, edge2, edge3], dim=1) + edge_fea = torch.cat([edge1_fea, edge2_fea, edge3_fea], dim=1) + edge = self.conv5(edge) + + return edge, edge_fea + + +class Decoder_Module(nn.Module): + """ + Parsing Branch Decoder Module. + """ + + def __init__(self, num_classes): + super(Decoder_Module, self).__init__() + self.conv1 = nn.Sequential( + nn.Conv2d(512, 256, kernel_size=1, padding=0, dilation=1, bias=False), + InPlaceABNSync(256) + ) + self.conv2 = nn.Sequential( + nn.Conv2d(256, 48, kernel_size=1, stride=1, padding=0, dilation=1, bias=False), + InPlaceABNSync(48) + ) + self.conv3 = nn.Sequential( + nn.Conv2d(304, 256, kernel_size=1, padding=0, dilation=1, bias=False), + InPlaceABNSync(256), + nn.Conv2d(256, 256, kernel_size=1, padding=0, dilation=1, bias=False), + InPlaceABNSync(256) + ) + + self.conv4 = nn.Conv2d(256, num_classes, kernel_size=1, padding=0, dilation=1, bias=True) + + def forward(self, xt, xl): + _, _, h, w = xl.size() + xt = F.interpolate(self.conv1(xt), size=(h, w), mode='bilinear', align_corners=True) + xl = self.conv2(xl) + x = torch.cat([xt, xl], dim=1) + x = self.conv3(x) + seg = self.conv4(x) + return seg, x + + +class ResNet(nn.Module): + def __init__(self, block, layers, num_classes): + self.inplanes = 128 + super(ResNet, self).__init__() + self.conv1 = conv3x3(3, 64, stride=2) + self.bn1 = BatchNorm2d(64) + self.relu1 = nn.ReLU(inplace=False) + self.conv2 = conv3x3(64, 64) + self.bn2 = BatchNorm2d(64) + self.relu2 = nn.ReLU(inplace=False) + self.conv3 = conv3x3(64, 128) + self.bn3 = BatchNorm2d(128) + self.relu3 = nn.ReLU(inplace=False) + + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + + self.layer1 = self._make_layer(block, 64, layers[0]) + self.layer2 = self._make_layer(block, 128, layers[1], stride=2) + self.layer3 = self._make_layer(block, 256, layers[2], stride=2) + self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=2, multi_grid=(1, 1, 1)) + + self.context_encoding = PSPModule(2048, 512) + + self.edge = Edge_Module() + self.decoder = Decoder_Module(num_classes) + + self.fushion = nn.Sequential( + nn.Conv2d(1024, 256, kernel_size=1, padding=0, dilation=1, bias=False), + InPlaceABNSync(256), + nn.Dropout2d(0.1), + nn.Conv2d(256, num_classes, kernel_size=1, padding=0, dilation=1, bias=True) + ) + + def _make_layer(self, block, planes, blocks, stride=1, dilation=1, multi_grid=1): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + nn.Conv2d(self.inplanes, planes * block.expansion, + kernel_size=1, stride=stride, bias=False), + BatchNorm2d(planes * block.expansion, affine=affine_par)) + + layers = [] + generate_multi_grid = lambda index, grids: grids[index % len(grids)] if isinstance(grids, tuple) else 1 + layers.append(block(self.inplanes, planes, stride, dilation=dilation, downsample=downsample, + multi_grid=generate_multi_grid(0, multi_grid))) + self.inplanes = planes * block.expansion + for i in range(1, blocks): + layers.append( + block(self.inplanes, planes, dilation=dilation, multi_grid=generate_multi_grid(i, multi_grid))) + + return nn.Sequential(*layers) + + def forward(self, x): + x = self.relu1(self.bn1(self.conv1(x))) + x = self.relu2(self.bn2(self.conv2(x))) + x = self.relu3(self.bn3(self.conv3(x))) + x = self.maxpool(x) + x2 = self.layer1(x) + x3 = self.layer2(x2) + x4 = self.layer3(x3) + x5 = self.layer4(x4) + x = self.context_encoding(x5) + parsing_result, parsing_fea = self.decoder(x, x2) + # Edge Branch + edge_result, edge_fea = self.edge(x2, x3, x4) + # Fusion Branch + x = torch.cat([parsing_fea, edge_fea], dim=1) + fusion_result = self.fushion(x) + return [[parsing_result, fusion_result], [edge_result]] + + +def initialize_pretrained_model(model, settings, pretrained='./models/resnet101-imagenet.pth'): + model.input_space = settings['input_space'] + model.input_size = settings['input_size'] + model.input_range = settings['input_range'] + model.mean = settings['mean'] + model.std = settings['std'] + + if pretrained is not None: + saved_state_dict = torch.load(pretrained) + new_params = model.state_dict().copy() + for i in saved_state_dict: + i_parts = i.split('.') + if not i_parts[0] == 'fc': + new_params['.'.join(i_parts[0:])] = saved_state_dict[i] + model.load_state_dict(new_params) + + +def resnet101(num_classes=20, pretrained='./models/resnet101-imagenet.pth'): + model = ResNet(Bottleneck, [3, 4, 23, 3], num_classes) + settings = pretrained_settings['resnet101']['imagenet'] + initialize_pretrained_model(model, settings, pretrained) + return model diff --git a/app/models/schp/networks/__init__.py b/app/models/schp/networks/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..f8baf07a2e8daf68a6812dce27086e2049500f11 --- /dev/null +++ b/app/models/schp/networks/__init__.py @@ -0,0 +1,13 @@ +from __future__ import absolute_import + +from app.models.schp.networks.AugmentCE2P import resnet101 + +__factory = { + 'resnet101': resnet101, +} + + +def init_model(name, *args, **kwargs): + if name not in __factory.keys(): + raise KeyError("Unknown model arch: {}".format(name)) + return __factory[name](*args, **kwargs) \ No newline at end of file diff --git a/app/models/schp/networks/backbone/mobilenetv2.py b/app/models/schp/networks/backbone/mobilenetv2.py new file mode 100644 index 0000000000000000000000000000000000000000..6f2fe342877cfbc5796efea85af9abccfb80a27e --- /dev/null +++ b/app/models/schp/networks/backbone/mobilenetv2.py @@ -0,0 +1,156 @@ +#!/usr/bin/env python +# -*- encoding: utf-8 -*- + +""" +@Author : Peike Li +@Contact : peike.li@yahoo.com +@File : mobilenetv2.py +@Time : 8/4/19 3:35 PM +@Desc : +@License : This source code is licensed under the license found in the + LICENSE file in the root directory of this source tree. +""" + +import torch.nn as nn +import math +import functools + +from modules import InPlaceABN, InPlaceABNSync + +BatchNorm2d = functools.partial(InPlaceABNSync, activation='none') + +__all__ = ['mobilenetv2'] + + +def conv_bn(inp, oup, stride): + return nn.Sequential( + nn.Conv2d(inp, oup, 3, stride, 1, bias=False), + BatchNorm2d(oup), + nn.ReLU6(inplace=True) + ) + + +def conv_1x1_bn(inp, oup): + return nn.Sequential( + nn.Conv2d(inp, oup, 1, 1, 0, bias=False), + BatchNorm2d(oup), + nn.ReLU6(inplace=True) + ) + + +class InvertedResidual(nn.Module): + def __init__(self, inp, oup, stride, expand_ratio): + super(InvertedResidual, self).__init__() + self.stride = stride + assert stride in [1, 2] + + hidden_dim = round(inp * expand_ratio) + self.use_res_connect = self.stride == 1 and inp == oup + + if expand_ratio == 1: + self.conv = nn.Sequential( + # dw + nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False), + BatchNorm2d(hidden_dim), + nn.ReLU6(inplace=True), + # pw-linear + nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), + BatchNorm2d(oup), + ) + else: + self.conv = nn.Sequential( + # pw + nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False), + BatchNorm2d(hidden_dim), + nn.ReLU6(inplace=True), + # dw + nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False), + BatchNorm2d(hidden_dim), + nn.ReLU6(inplace=True), + # pw-linear + nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), + BatchNorm2d(oup), + ) + + def forward(self, x): + if self.use_res_connect: + return x + self.conv(x) + else: + return self.conv(x) + + +class MobileNetV2(nn.Module): + def __init__(self, n_class=1000, input_size=224, width_mult=1.): + super(MobileNetV2, self).__init__() + block = InvertedResidual + input_channel = 32 + last_channel = 1280 + interverted_residual_setting = [ + # t, c, n, s + [1, 16, 1, 1], + [6, 24, 2, 2], # layer 2 + [6, 32, 3, 2], # layer 3 + [6, 64, 4, 2], + [6, 96, 3, 1], # layer 4 + [6, 160, 3, 2], + [6, 320, 1, 1], # layer 5 + ] + + # building first layer + assert input_size % 32 == 0 + input_channel = int(input_channel * width_mult) + self.last_channel = int(last_channel * width_mult) if width_mult > 1.0 else last_channel + self.features = [conv_bn(3, input_channel, 2)] + # building inverted residual blocks + for t, c, n, s in interverted_residual_setting: + output_channel = int(c * width_mult) + for i in range(n): + if i == 0: + self.features.append(block(input_channel, output_channel, s, expand_ratio=t)) + else: + self.features.append(block(input_channel, output_channel, 1, expand_ratio=t)) + input_channel = output_channel + # building last several layers + self.features.append(conv_1x1_bn(input_channel, self.last_channel)) + # make it nn.Sequential + self.features = nn.Sequential(*self.features) + + # building classifier + self.classifier = nn.Sequential( + nn.Dropout(0.2), + nn.Linear(self.last_channel, n_class), + ) + + self._initialize_weights() + + def forward(self, x): + x = self.features(x) + x = x.mean(3).mean(2) + x = self.classifier(x) + return x + + def _initialize_weights(self): + for m in self.modules(): + if isinstance(m, nn.Conv2d): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.weight.data.normal_(0, math.sqrt(2. / n)) + if m.bias is not None: + m.bias.data.zero_() + elif isinstance(m, BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + elif isinstance(m, nn.Linear): + n = m.weight.size(1) + m.weight.data.normal_(0, 0.01) + m.bias.data.zero_() + + +def mobilenetv2(pretrained=False, **kwargs): + """Constructs a MobileNet_V2 model. + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + """ + model = MobileNetV2(n_class=1000, **kwargs) + if pretrained: + model.load_state_dict(load_url(model_urls['mobilenetv2']), strict=False) + return model diff --git a/app/models/schp/networks/backbone/resnet.py b/app/models/schp/networks/backbone/resnet.py new file mode 100644 index 0000000000000000000000000000000000000000..88d6f73bc4fc327e18123020e01ccf5c1b37f025 --- /dev/null +++ b/app/models/schp/networks/backbone/resnet.py @@ -0,0 +1,205 @@ +#!/usr/bin/env python +# -*- encoding: utf-8 -*- + +""" +@Author : Peike Li +@Contact : peike.li@yahoo.com +@File : resnet.py +@Time : 8/4/19 3:35 PM +@Desc : +@License : This source code is licensed under the license found in the + LICENSE file in the root directory of this source tree. +""" + +import functools +import torch.nn as nn +import math +from torch.utils.model_zoo import load_url + +from modules import InPlaceABNSync + +BatchNorm2d = functools.partial(InPlaceABNSync, activation='none') + +__all__ = ['ResNet', 'resnet18', 'resnet50', 'resnet101'] # resnet101 is coming soon! + +model_urls = { + 'resnet18': 'http://sceneparsing.csail.mit.edu/model/pretrained_resnet/resnet18-imagenet.pth', + 'resnet50': 'http://sceneparsing.csail.mit.edu/model/pretrained_resnet/resnet50-imagenet.pth', + 'resnet101': 'http://sceneparsing.csail.mit.edu/model/pretrained_resnet/resnet101-imagenet.pth' +} + + +def conv3x3(in_planes, out_planes, stride=1): + "3x3 convolution with padding" + return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, + padding=1, bias=False) + + +class BasicBlock(nn.Module): + expansion = 1 + + def __init__(self, inplanes, planes, stride=1, downsample=None): + super(BasicBlock, self).__init__() + self.conv1 = conv3x3(inplanes, planes, stride) + self.bn1 = BatchNorm2d(planes) + self.relu = nn.ReLU(inplace=True) + self.conv2 = conv3x3(planes, planes) + self.bn2 = BatchNorm2d(planes) + self.downsample = downsample + self.stride = stride + + def forward(self, x): + residual = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + + if self.downsample is not None: + residual = self.downsample(x) + + out += residual + out = self.relu(out) + + return out + + +class Bottleneck(nn.Module): + expansion = 4 + + def __init__(self, inplanes, planes, stride=1, downsample=None): + super(Bottleneck, self).__init__() + self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) + self.bn1 = BatchNorm2d(planes) + self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, + padding=1, bias=False) + self.bn2 = BatchNorm2d(planes) + self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) + self.bn3 = BatchNorm2d(planes * 4) + self.relu = nn.ReLU(inplace=True) + self.downsample = downsample + self.stride = stride + + def forward(self, x): + residual = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + out = self.relu(out) + + out = self.conv3(out) + out = self.bn3(out) + + if self.downsample is not None: + residual = self.downsample(x) + + out += residual + out = self.relu(out) + + return out + + +class ResNet(nn.Module): + + def __init__(self, block, layers, num_classes=1000): + self.inplanes = 128 + super(ResNet, self).__init__() + self.conv1 = conv3x3(3, 64, stride=2) + self.bn1 = BatchNorm2d(64) + self.relu1 = nn.ReLU(inplace=True) + self.conv2 = conv3x3(64, 64) + self.bn2 = BatchNorm2d(64) + self.relu2 = nn.ReLU(inplace=True) + self.conv3 = conv3x3(64, 128) + self.bn3 = BatchNorm2d(128) + self.relu3 = nn.ReLU(inplace=True) + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + + self.layer1 = self._make_layer(block, 64, layers[0]) + self.layer2 = self._make_layer(block, 128, layers[1], stride=2) + self.layer3 = self._make_layer(block, 256, layers[2], stride=2) + self.layer4 = self._make_layer(block, 512, layers[3], stride=2) + self.avgpool = nn.AvgPool2d(7, stride=1) + self.fc = nn.Linear(512 * block.expansion, num_classes) + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.weight.data.normal_(0, math.sqrt(2. / n)) + elif isinstance(m, BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + + def _make_layer(self, block, planes, blocks, stride=1): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + nn.Conv2d(self.inplanes, planes * block.expansion, + kernel_size=1, stride=stride, bias=False), + BatchNorm2d(planes * block.expansion), + ) + + layers = [] + layers.append(block(self.inplanes, planes, stride, downsample)) + self.inplanes = planes * block.expansion + for i in range(1, blocks): + layers.append(block(self.inplanes, planes)) + + return nn.Sequential(*layers) + + def forward(self, x): + x = self.relu1(self.bn1(self.conv1(x))) + x = self.relu2(self.bn2(self.conv2(x))) + x = self.relu3(self.bn3(self.conv3(x))) + x = self.maxpool(x) + + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + + x = self.avgpool(x) + x = x.view(x.size(0), -1) + x = self.fc(x) + + return x + + +def resnet18(pretrained=False, **kwargs): + """Constructs a ResNet-18 model. + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + """ + model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) + if pretrained: + model.load_state_dict(load_url(model_urls['resnet18'])) + return model + + +def resnet50(pretrained=False, **kwargs): + """Constructs a ResNet-50 model. + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + """ + model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) + if pretrained: + model.load_state_dict(load_url(model_urls['resnet50']), strict=False) + return model + + +def resnet101(pretrained=False, **kwargs): + """Constructs a ResNet-101 model. + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + """ + model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) + if pretrained: + model.load_state_dict(load_url(model_urls['resnet101']), strict=False) + return model diff --git a/app/models/schp/networks/backbone/resnext.py b/app/models/schp/networks/backbone/resnext.py new file mode 100644 index 0000000000000000000000000000000000000000..96adb54146addc523be71591eb93afcc2c25307f --- /dev/null +++ b/app/models/schp/networks/backbone/resnext.py @@ -0,0 +1,149 @@ +#!/usr/bin/env python +# -*- encoding: utf-8 -*- + +""" +@Author : Peike Li +@Contact : peike.li@yahoo.com +@File : resnext.py.py +@Time : 8/11/19 8:58 PM +@Desc : +@License : This source code is licensed under the license found in the + LICENSE file in the root directory of this source tree. +""" +import functools +import torch.nn as nn +import math +from torch.utils.model_zoo import load_url + +from modules import InPlaceABNSync + +BatchNorm2d = functools.partial(InPlaceABNSync, activation='none') + +__all__ = ['ResNeXt', 'resnext101'] # support resnext 101 + +model_urls = { + 'resnext50': 'http://sceneparsing.csail.mit.edu/model/pretrained_resnet/resnext50-imagenet.pth', + 'resnext101': 'http://sceneparsing.csail.mit.edu/model/pretrained_resnet/resnext101-imagenet.pth' +} + + +def conv3x3(in_planes, out_planes, stride=1): + "3x3 convolution with padding" + return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, + padding=1, bias=False) + + +class GroupBottleneck(nn.Module): + expansion = 2 + + def __init__(self, inplanes, planes, stride=1, groups=1, downsample=None): + super(GroupBottleneck, self).__init__() + self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) + self.bn1 = BatchNorm2d(planes) + self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, + padding=1, groups=groups, bias=False) + self.bn2 = BatchNorm2d(planes) + self.conv3 = nn.Conv2d(planes, planes * 2, kernel_size=1, bias=False) + self.bn3 = BatchNorm2d(planes * 2) + self.relu = nn.ReLU(inplace=True) + self.downsample = downsample + self.stride = stride + + def forward(self, x): + residual = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + out = self.relu(out) + + out = self.conv3(out) + out = self.bn3(out) + + if self.downsample is not None: + residual = self.downsample(x) + + out += residual + out = self.relu(out) + + return out + + +class ResNeXt(nn.Module): + + def __init__(self, block, layers, groups=32, num_classes=1000): + self.inplanes = 128 + super(ResNeXt, self).__init__() + self.conv1 = conv3x3(3, 64, stride=2) + self.bn1 = BatchNorm2d(64) + self.relu1 = nn.ReLU(inplace=True) + self.conv2 = conv3x3(64, 64) + self.bn2 = BatchNorm2d(64) + self.relu2 = nn.ReLU(inplace=True) + self.conv3 = conv3x3(64, 128) + self.bn3 = BatchNorm2d(128) + self.relu3 = nn.ReLU(inplace=True) + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + + self.layer1 = self._make_layer(block, 128, layers[0], groups=groups) + self.layer2 = self._make_layer(block, 256, layers[1], stride=2, groups=groups) + self.layer3 = self._make_layer(block, 512, layers[2], stride=2, groups=groups) + self.layer4 = self._make_layer(block, 1024, layers[3], stride=2, groups=groups) + self.avgpool = nn.AvgPool2d(7, stride=1) + self.fc = nn.Linear(1024 * block.expansion, num_classes) + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels // m.groups + m.weight.data.normal_(0, math.sqrt(2. / n)) + elif isinstance(m, BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + + def _make_layer(self, block, planes, blocks, stride=1, groups=1): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + nn.Conv2d(self.inplanes, planes * block.expansion, + kernel_size=1, stride=stride, bias=False), + BatchNorm2d(planes * block.expansion), + ) + + layers = [] + layers.append(block(self.inplanes, planes, stride, groups, downsample)) + self.inplanes = planes * block.expansion + for i in range(1, blocks): + layers.append(block(self.inplanes, planes, groups=groups)) + + return nn.Sequential(*layers) + + def forward(self, x): + x = self.relu1(self.bn1(self.conv1(x))) + x = self.relu2(self.bn2(self.conv2(x))) + x = self.relu3(self.bn3(self.conv3(x))) + x = self.maxpool(x) + + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + + x = self.avgpool(x) + x = x.view(x.size(0), -1) + x = self.fc(x) + + return x + + +def resnext101(pretrained=False, **kwargs): + """Constructs a ResNet-101 model. + Args: + pretrained (bool): If True, returns a model pre-trained on Places + """ + model = ResNeXt(GroupBottleneck, [3, 4, 23, 3], **kwargs) + if pretrained: + model.load_state_dict(load_url(model_urls['resnext101']), strict=False) + return model diff --git a/app/models/schp/networks/context_encoding/aspp.py b/app/models/schp/networks/context_encoding/aspp.py new file mode 100644 index 0000000000000000000000000000000000000000..d0ba531a8920665c982b1f3412bc030465d56d2a --- /dev/null +++ b/app/models/schp/networks/context_encoding/aspp.py @@ -0,0 +1,64 @@ +#!/usr/bin/env python +# -*- encoding: utf-8 -*- + +""" +@Author : Peike Li +@Contact : peike.li@yahoo.com +@File : aspp.py +@Time : 8/4/19 3:36 PM +@Desc : +@License : This source code is licensed under the license found in the + LICENSE file in the root directory of this source tree. +""" + +import torch +import torch.nn as nn +from torch.nn import functional as F + +from modules import InPlaceABNSync + + +class ASPPModule(nn.Module): + """ + Reference: + Chen, Liang-Chieh, et al. *"Rethinking Atrous Convolution for Semantic Image Segmentation."* + """ + def __init__(self, features, out_features=512, inner_features=256, dilations=(12, 24, 36)): + super(ASPPModule, self).__init__() + + self.conv1 = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)), + nn.Conv2d(features, inner_features, kernel_size=1, padding=0, dilation=1, + bias=False), + InPlaceABNSync(inner_features)) + self.conv2 = nn.Sequential( + nn.Conv2d(features, inner_features, kernel_size=1, padding=0, dilation=1, bias=False), + InPlaceABNSync(inner_features)) + self.conv3 = nn.Sequential( + nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[0], dilation=dilations[0], bias=False), + InPlaceABNSync(inner_features)) + self.conv4 = nn.Sequential( + nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[1], dilation=dilations[1], bias=False), + InPlaceABNSync(inner_features)) + self.conv5 = nn.Sequential( + nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[2], dilation=dilations[2], bias=False), + InPlaceABNSync(inner_features)) + + self.bottleneck = nn.Sequential( + nn.Conv2d(inner_features * 5, out_features, kernel_size=1, padding=0, dilation=1, bias=False), + InPlaceABNSync(out_features), + nn.Dropout2d(0.1) + ) + + def forward(self, x): + _, _, h, w = x.size() + + feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True) + + feat2 = self.conv2(x) + feat3 = self.conv3(x) + feat4 = self.conv4(x) + feat5 = self.conv5(x) + out = torch.cat((feat1, feat2, feat3, feat4, feat5), 1) + + bottle = self.bottleneck(out) + return bottle \ No newline at end of file diff --git a/app/models/schp/networks/context_encoding/ocnet.py b/app/models/schp/networks/context_encoding/ocnet.py new file mode 100644 index 0000000000000000000000000000000000000000..ac43ebf489ee478c48acf3f93b01b32bdb08cdf3 --- /dev/null +++ b/app/models/schp/networks/context_encoding/ocnet.py @@ -0,0 +1,226 @@ +#!/usr/bin/env python +# -*- encoding: utf-8 -*- + +""" +@Author : Peike Li +@Contact : peike.li@yahoo.com +@File : ocnet.py +@Time : 8/4/19 3:36 PM +@Desc : +@License : This source code is licensed under the license found in the + LICENSE file in the root directory of this source tree. +""" + +import functools + +import torch +import torch.nn as nn +from torch.autograd import Variable +from torch.nn import functional as F + +from modules import InPlaceABNSync +BatchNorm2d = functools.partial(InPlaceABNSync, activation='none') + + +class _SelfAttentionBlock(nn.Module): + ''' + The basic implementation for self-attention block/non-local block + Input: + N X C X H X W + Parameters: + in_channels : the dimension of the input feature map + key_channels : the dimension after the key/query transform + value_channels : the dimension after the value transform + scale : choose the scale to downsample the input feature maps (save memory cost) + Return: + N X C X H X W + position-aware context features.(w/o concate or add with the input) + ''' + + def __init__(self, in_channels, key_channels, value_channels, out_channels=None, scale=1): + super(_SelfAttentionBlock, self).__init__() + self.scale = scale + self.in_channels = in_channels + self.out_channels = out_channels + self.key_channels = key_channels + self.value_channels = value_channels + if out_channels == None: + self.out_channels = in_channels + self.pool = nn.MaxPool2d(kernel_size=(scale, scale)) + self.f_key = nn.Sequential( + nn.Conv2d(in_channels=self.in_channels, out_channels=self.key_channels, + kernel_size=1, stride=1, padding=0), + InPlaceABNSync(self.key_channels), + ) + self.f_query = self.f_key + self.f_value = nn.Conv2d(in_channels=self.in_channels, out_channels=self.value_channels, + kernel_size=1, stride=1, padding=0) + self.W = nn.Conv2d(in_channels=self.value_channels, out_channels=self.out_channels, + kernel_size=1, stride=1, padding=0) + nn.init.constant(self.W.weight, 0) + nn.init.constant(self.W.bias, 0) + + def forward(self, x): + batch_size, h, w = x.size(0), x.size(2), x.size(3) + if self.scale > 1: + x = self.pool(x) + + value = self.f_value(x).view(batch_size, self.value_channels, -1) + value = value.permute(0, 2, 1) + query = self.f_query(x).view(batch_size, self.key_channels, -1) + query = query.permute(0, 2, 1) + key = self.f_key(x).view(batch_size, self.key_channels, -1) + + sim_map = torch.matmul(query, key) + sim_map = (self.key_channels ** -.5) * sim_map + sim_map = F.softmax(sim_map, dim=-1) + + context = torch.matmul(sim_map, value) + context = context.permute(0, 2, 1).contiguous() + context = context.view(batch_size, self.value_channels, *x.size()[2:]) + context = self.W(context) + if self.scale > 1: + context = F.upsample(input=context, size=(h, w), mode='bilinear', align_corners=True) + return context + + +class SelfAttentionBlock2D(_SelfAttentionBlock): + def __init__(self, in_channels, key_channels, value_channels, out_channels=None, scale=1): + super(SelfAttentionBlock2D, self).__init__(in_channels, + key_channels, + value_channels, + out_channels, + scale) + + +class BaseOC_Module(nn.Module): + """ + Implementation of the BaseOC module + Parameters: + in_features / out_features: the channels of the input / output feature maps. + dropout: we choose 0.05 as the default value. + size: you can apply multiple sizes. Here we only use one size. + Return: + features fused with Object context information. + """ + + def __init__(self, in_channels, out_channels, key_channels, value_channels, dropout, sizes=([1])): + super(BaseOC_Module, self).__init__() + self.stages = [] + self.stages = nn.ModuleList( + [self._make_stage(in_channels, out_channels, key_channels, value_channels, size) for size in sizes]) + self.conv_bn_dropout = nn.Sequential( + nn.Conv2d(2 * in_channels, out_channels, kernel_size=1, padding=0), + InPlaceABNSync(out_channels), + nn.Dropout2d(dropout) + ) + + def _make_stage(self, in_channels, output_channels, key_channels, value_channels, size): + return SelfAttentionBlock2D(in_channels, + key_channels, + value_channels, + output_channels, + size) + + def forward(self, feats): + priors = [stage(feats) for stage in self.stages] + context = priors[0] + for i in range(1, len(priors)): + context += priors[i] + output = self.conv_bn_dropout(torch.cat([context, feats], 1)) + return output + + +class BaseOC_Context_Module(nn.Module): + """ + Output only the context features. + Parameters: + in_features / out_features: the channels of the input / output feature maps. + dropout: specify the dropout ratio + fusion: We provide two different fusion method, "concat" or "add" + size: we find that directly learn the attention weights on even 1/8 feature maps is hard. + Return: + features after "concat" or "add" + """ + + def __init__(self, in_channels, out_channels, key_channels, value_channels, dropout, sizes=([1])): + super(BaseOC_Context_Module, self).__init__() + self.stages = [] + self.stages = nn.ModuleList( + [self._make_stage(in_channels, out_channels, key_channels, value_channels, size) for size in sizes]) + self.conv_bn_dropout = nn.Sequential( + nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0), + InPlaceABNSync(out_channels), + ) + + def _make_stage(self, in_channels, output_channels, key_channels, value_channels, size): + return SelfAttentionBlock2D(in_channels, + key_channels, + value_channels, + output_channels, + size) + + def forward(self, feats): + priors = [stage(feats) for stage in self.stages] + context = priors[0] + for i in range(1, len(priors)): + context += priors[i] + output = self.conv_bn_dropout(context) + return output + + +class ASP_OC_Module(nn.Module): + def __init__(self, features, out_features=256, dilations=(12, 24, 36)): + super(ASP_OC_Module, self).__init__() + self.context = nn.Sequential(nn.Conv2d(features, out_features, kernel_size=3, padding=1, dilation=1, bias=True), + InPlaceABNSync(out_features), + BaseOC_Context_Module(in_channels=out_features, out_channels=out_features, + key_channels=out_features // 2, value_channels=out_features, + dropout=0, sizes=([2]))) + self.conv2 = nn.Sequential(nn.Conv2d(features, out_features, kernel_size=1, padding=0, dilation=1, bias=False), + InPlaceABNSync(out_features)) + self.conv3 = nn.Sequential( + nn.Conv2d(features, out_features, kernel_size=3, padding=dilations[0], dilation=dilations[0], bias=False), + InPlaceABNSync(out_features)) + self.conv4 = nn.Sequential( + nn.Conv2d(features, out_features, kernel_size=3, padding=dilations[1], dilation=dilations[1], bias=False), + InPlaceABNSync(out_features)) + self.conv5 = nn.Sequential( + nn.Conv2d(features, out_features, kernel_size=3, padding=dilations[2], dilation=dilations[2], bias=False), + InPlaceABNSync(out_features)) + + self.conv_bn_dropout = nn.Sequential( + nn.Conv2d(out_features * 5, out_features, kernel_size=1, padding=0, dilation=1, bias=False), + InPlaceABNSync(out_features), + nn.Dropout2d(0.1) + ) + + def _cat_each(self, feat1, feat2, feat3, feat4, feat5): + assert (len(feat1) == len(feat2)) + z = [] + for i in range(len(feat1)): + z.append(torch.cat((feat1[i], feat2[i], feat3[i], feat4[i], feat5[i]), 1)) + return z + + def forward(self, x): + if isinstance(x, Variable): + _, _, h, w = x.size() + elif isinstance(x, tuple) or isinstance(x, list): + _, _, h, w = x[0].size() + else: + raise RuntimeError('unknown input type') + + feat1 = self.context(x) + feat2 = self.conv2(x) + feat3 = self.conv3(x) + feat4 = self.conv4(x) + feat5 = self.conv5(x) + + if isinstance(x, Variable): + out = torch.cat((feat1, feat2, feat3, feat4, feat5), 1) + elif isinstance(x, tuple) or isinstance(x, list): + out = self._cat_each(feat1, feat2, feat3, feat4, feat5) + else: + raise RuntimeError('unknown input type') + output = self.conv_bn_dropout(out) + return output diff --git a/app/models/schp/networks/context_encoding/psp.py b/app/models/schp/networks/context_encoding/psp.py new file mode 100644 index 0000000000000000000000000000000000000000..47181dc3f5fddb1c7fb80ad58a6694aae9ebd746 --- /dev/null +++ b/app/models/schp/networks/context_encoding/psp.py @@ -0,0 +1,48 @@ +#!/usr/bin/env python +# -*- encoding: utf-8 -*- + +""" +@Author : Peike Li +@Contact : peike.li@yahoo.com +@File : psp.py +@Time : 8/4/19 3:36 PM +@Desc : +@License : This source code is licensed under the license found in the + LICENSE file in the root directory of this source tree. +""" + +import torch +import torch.nn as nn +from torch.nn import functional as F + +from modules import InPlaceABNSync + + +class PSPModule(nn.Module): + """ + Reference: + Zhao, Hengshuang, et al. *"Pyramid scene parsing network."* + """ + def __init__(self, features, out_features=512, sizes=(1, 2, 3, 6)): + super(PSPModule, self).__init__() + + self.stages = [] + self.stages = nn.ModuleList([self._make_stage(features, out_features, size) for size in sizes]) + self.bottleneck = nn.Sequential( + nn.Conv2d(features + len(sizes) * out_features, out_features, kernel_size=3, padding=1, dilation=1, + bias=False), + InPlaceABNSync(out_features), + ) + + def _make_stage(self, features, out_features, size): + prior = nn.AdaptiveAvgPool2d(output_size=(size, size)) + conv = nn.Conv2d(features, out_features, kernel_size=1, bias=False) + bn = InPlaceABNSync(out_features) + return nn.Sequential(prior, conv, bn) + + def forward(self, feats): + h, w = feats.size(2), feats.size(3) + priors = [F.interpolate(input=stage(feats), size=(h, w), mode='bilinear', align_corners=True) for stage in + self.stages] + [feats] + bottle = self.bottleneck(torch.cat(priors, 1)) + return bottle \ No newline at end of file diff --git a/app/models/schp/requirements.txt b/app/models/schp/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..fa113c8904cc69b76694a0a666de0fd895619770 --- /dev/null +++ b/app/models/schp/requirements.txt @@ -0,0 +1 @@ +opencv-python==4.4.0.46 diff --git a/app/models/schp/simple_extractor.py b/app/models/schp/simple_extractor.py new file mode 100644 index 0000000000000000000000000000000000000000..d3243c42b11c19fef366e25dfd8fd1325ed8c9ad --- /dev/null +++ b/app/models/schp/simple_extractor.py @@ -0,0 +1,282 @@ +#!/usr/bin/env python +# -*- encoding: utf-8 -*- + +import os +from typing import List + +import cv2 +import torch +import numpy as np +from PIL import Image +import torchvision.transforms as transforms + +from app.models.schp import networks +from app.models.schp.utils.transforms import get_affine_transform, transform_logits + +# æ•°æ®é›†è®¾ç½® +dataset_settings = { + 'lip': { + 'input_size': [473, 473], + 'num_classes': 20, + 'label': ['Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', 'Dress', 'Coat', + 'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm', 'Right-arm', + 'Left-leg', 'Right-leg', 'Left-shoe', 'Right-shoe'] + }, + 'atr': { + 'input_size': [512, 512], + 'num_classes': 18, + 'label': ['Background', 'Hat', 'Hair', 'Sunglasses', 'Upper-clothes', 'Skirt', 'Pants', 'Dress', 'Belt', + 'Left-shoe', 'Right-shoe', 'Face', 'Left-leg', 'Right-leg', 'Left-arm', 'Right-arm', 'Bag', 'Scarf'] + }, + 'pascal': { + 'input_size': [512, 512], + 'num_classes': 7, + 'label': ['Background', 'Head', 'Torso', 'Upper Arms', 'Lower Arms', 'Upper Legs', 'Lower Legs'], + } +} + + +def get_color_by_label(label: str) -> List[int]: + """ + æ ¹æ®æ ‡ç¾å称获å–对应的RGB颜色值 + + Args: + label (str): æ ‡ç¾å称,如 'Face', 'Hair' ç‰ + + Returns: + List[int]: RGBé¢œè‰²å€¼åˆ—è¡¨ï¼Œæ ¼å¼ä¸º [R, G, B],值范围0-255 + """ + # LIPæ•°æ®é›†æ ‡ç¾ + labels = ['Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', + 'Dress', 'Coat', 'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', + 'Face', 'Left-arm', 'Right-arm', 'Left-leg', 'Right-leg', 'Left-shoe', 'Right-shoe'] + + # æ£€æŸ¥æ ‡ç¾æ˜¯å¦å˜åœ¨ + if label not in labels: + return [] + + # èŽ·å–æ ‡ç¾ç´¢å¼• + label_index = labels.index(label) + + # 生æˆè°ƒè‰²æ¿ + palette = get_palette(len(labels)) + + # 获å–对应颜色的RGB值并返回列表 + r = palette[label_index * 3 + 0] + g = palette[label_index * 3 + 1] + b = palette[label_index * 3 + 2] + + return [r, g, b] + + +def get_palette(num_cls): + """返回用于å¯è§†åŒ–分割掩ç çš„é¢œè‰²æ˜ å°„""" + n = num_cls + palette = [0] * (n * 3) + for j in range(0, n): + lab = j + palette[j * 3 + 0] = 0 + palette[j * 3 + 1] = 0 + palette[j * 3 + 2] = 0 + i = 0 + while lab: + palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i)) + palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i)) + palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i)) + i += 1 + lab >>= 3 + return palette + + +def _box2cs(box, aspect_ratio): + """将边界框转æ¢ä¸ºä¸å¿ƒç‚¹å’Œå°ºåº¦""" + x, y, w, h = box[:4] + return _xywh2cs(x, y, w, h, aspect_ratio) + + +def _xywh2cs(x, y, w, h, aspect_ratio): + """å°†xywhæ ¼å¼è½¬æ¢ä¸ºä¸å¿ƒç‚¹å’Œå°ºåº¦""" + center = np.zeros((2), dtype=np.float32) + center[0] = x + w * 0.5 + center[1] = y + h * 0.5 + if w > aspect_ratio * h: + h = w * 1.0 / aspect_ratio + elif w < aspect_ratio * h: + w = h * aspect_ratio + scale = np.array([w, h], dtype=np.float32) + return center, scale + + +class HumanParsingModel: + def __init__(self, model_path, dataset='atr', device=None): + """ + åˆå§‹åŒ–äººä½“è§£æžæ¨¡åž‹ + + Args: + model_path: 预è®ç»ƒæ¨¡åž‹è·¯å¾„ + dataset: æ•°æ®é›†ç±»åž‹ ('lip', 'atr', 'pascal') + device: 计算设备 (None表示自动选择) + """ + self.dataset = dataset + self.device = device if device else torch.device('cuda' if torch.cuda.is_available() else 'cpu') + + # èŽ·å–æ•°æ®é›†è®¾ç½® + self.num_classes = dataset_settings[dataset]['num_classes'] + self.input_size = dataset_settings[dataset]['input_size'] + self.label = dataset_settings[dataset]['label'] + self.aspect_ratio = self.input_size[1] * 1.0 / self.input_size[0] + self.input_size_array = np.asarray(self.input_size) + + # åˆå§‹åŒ–模型 + self.model = networks.init_model('resnet101', num_classes=self.num_classes, pretrained=None) + + # åŠ è½½é¢„è®ç»ƒæƒé‡ + state_dict = torch.load(model_path, map_location=self.device)['state_dict'] + from collections import OrderedDict + new_state_dict = OrderedDict() + for k, v in state_dict.items(): + name = k[7:] if k.startswith('module.') else k # 移除 'module.' å‰ç¼€ + new_state_dict[name] = v + self.model.load_state_dict(new_state_dict) + + # å°†æ¨¡åž‹ç§»åŠ¨åˆ°æŒ‡å®šè®¾å¤‡å¹¶è®¾ç½®ä¸ºè¯„ä¼°æ¨¡å¼ + self.model.to(self.device) + self.model.eval() + + # 图åƒé¢„处ç†å˜æ¢ + self.transform = transforms.Compose([ + transforms.ToTensor(), + transforms.Normalize(mean=[0.406, 0.456, 0.485], std=[0.225, 0.224, 0.229]) + ]) + + # 获å–è°ƒè‰²æ¿ + self.palette = get_palette(self.num_classes) + + print(f"æ¨¡åž‹å·²åŠ è½½ï¼Œä½¿ç”¨è®¾å¤‡: {self.device}") + print(f"æ•°æ®é›†: {dataset}, 类别数: {self.num_classes}") + + +def process_single_image(model, input_image): + """ + 处ç†å•å¼ å›¾ç‰‡ + + Args: + model: HumanParsingModel实例 + input_image: 输入图片,å¯ä»¥æ˜¯ï¼š + - numpy数组 (H, W, C) BGRæ ¼å¼ + - PIL Image对象 + - 图片文件路径å—符串 + + Returns: + PIL Image对象,包å«åˆ†å‰²ç»“æžœçš„å½©è‰²å›¾åƒ + """ + + # 处ç†ä¸åŒç±»åž‹çš„输入 + if isinstance(input_image, str): + # 如果是文件路径 + img = cv2.imread(input_image, cv2.IMREAD_COLOR) + if img is None: + raise ValueError(f"æ— æ³•è¯»å–图片: {input_image}") + elif isinstance(input_image, Image.Image): + # 如果是PIL Image,转æ¢ä¸ºBGR numpy数组 + img = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR) + elif isinstance(input_image, np.ndarray): + # 如果是numpy数组,直接使用 + img = input_image.copy() + else: + raise ValueError("è¾“å…¥å›¾ç‰‡æ ¼å¼ä¸æ”¯æŒï¼Œè¯·ä½¿ç”¨numpy数组ã€PIL Image或文件路径") + + h, w, _ = img.shape + + # 获å–人体ä¸å¿ƒç‚¹å’Œå°ºåº¦ + person_center, s = _box2cs([0, 0, w - 1, h - 1], model.aspect_ratio) + r = 0 + + # 获å–ä»¿å°„å˜æ¢çŸ©é˜µ + trans = get_affine_transform(person_center, s, r, model.input_size_array) + + # åº”ç”¨ä»¿å°„å˜æ¢ + input_tensor = cv2.warpAffine( + img, + trans, + (int(model.input_size[1]), int(model.input_size[0])), + flags=cv2.INTER_LINEAR, + borderMode=cv2.BORDER_CONSTANT, + borderValue=(0, 0, 0) + ) + + # é¢„å¤„ç† + input_tensor = model.transform(input_tensor) + input_tensor = input_tensor.unsqueeze(0) # æ·»åŠ batch维度 + input_tensor = input_tensor.to(model.device) + + # æ¨¡åž‹æŽ¨ç† + with torch.no_grad(): + output = model.model(input_tensor) + + # ä¸Šé‡‡æ ·åˆ°è¾“å…¥å°ºå¯¸ + upsample = torch.nn.Upsample(size=model.input_size, mode='bilinear', align_corners=True) + upsample_output = upsample(output[0][-1][0].unsqueeze(0)) + upsample_output = upsample_output.squeeze() + upsample_output = upsample_output.permute(1, 2, 0) # CHW -> HWC + + # å˜æ¢å›žåŽŸå§‹å›¾åƒå°ºå¯¸ + logits_result = transform_logits( + upsample_output.data.cpu().numpy(), + person_center, + s, + w, + h, + input_size=model.input_size + ) + + # 获å–分割结果 + parsing_result = np.argmax(logits_result, axis=2) + + # 转æ¢ä¸ºPIL图åƒå¹¶åº”ç”¨è°ƒè‰²æ¿ + output_img = Image.fromarray(np.asarray(parsing_result, dtype=np.uint8)) + output_img.putpalette(model.palette) + + return output_img + + +# 使用示例函数 +def parse_human_image(input_image, model_path, dataset='lip', device=None): + """ + 便æ·å‡½æ•°ï¼šè§£æžå•å¼ äººä½“å›¾åƒ + + Args: + input_image: 输入图片 (numpy数组ã€PIL Image或文件路径) + model_path: 预è®ç»ƒæ¨¡åž‹è·¯å¾„ + dataset: æ•°æ®é›†ç±»åž‹ ('lip', 'atr', 'pascal') + device: 计算设备 + + Returns: + PIL Image对象,包å«åˆ†å‰²ç»“æžœ + """ + # 创建模型实例 + model = HumanParsingModel(model_path, dataset, device) + + # 处ç†å›¾åƒ + result = process_single_image(model, input_image) + + return result + + +# 使用示例 +if __name__ == '__main__': + # 示例1:使用便æ·å‡½æ•° + model_path = r"D:\work\PycharmProjects\PythonProject\checkpoints\exp-schp-201908261155-lip.pth" + input_image_path = r"D:\work\PycharmProjects\PythonProject\img1.jpg" + + # result_image = parse_human_image(input_image_path, model_path, dataset='atr') + # result_image.save(r"D:\work\PycharmProjects\PythonProject\output_result.png") + + # 示例2:使用类的方å¼ï¼ˆæŽ¨è用于批é‡å¤„ç†ï¼‰ + model = HumanParsingModel(model_path, dataset='lip') + + # 处ç†å¤šå¼ 图片 + image_paths = [r"D:\work\PycharmProjects\PythonProject\img1.jpg", r"D:\work\PycharmProjects\PythonProject\img2.jpg", r"D:\work\PycharmProjects\PythonProject\img3.jpg"] + for i, img_path in enumerate(image_paths): + result = process_single_image(model, img_path) + result.save(f"result_{i}.png") diff --git a/app/models/schp/train.py b/app/models/schp/train.py new file mode 100644 index 0000000000000000000000000000000000000000..c13c5040dae096a6da9d2d468942a19a5b3a3641 --- /dev/null +++ b/app/models/schp/train.py @@ -0,0 +1,231 @@ +#!/usr/bin/env python +# -*- encoding: utf-8 -*- + +""" +@Author : Peike Li +@Contact : peike.li@yahoo.com +@File : train.py +@Time : 8/4/19 3:36 PM +@Desc : +@License : This source code is licensed under the license found in the + LICENSE file in the root directory of this source tree. +""" + +import os +import json +import timeit +import argparse + +import torch +import torch.optim as optim +import torchvision.transforms as transforms +import torch.backends.cudnn as cudnn +from torch.utils import data + +import networks +import utils.schp as schp +from datasets.datasets import LIPDataSet +from datasets.target_generation import generate_edge_tensor +from utils.transforms import BGR2RGB_transform +from utils.criterion import CriterionAll +from utils.encoding import DataParallelModel, DataParallelCriterion +from utils.warmup_scheduler import SGDRScheduler + + +def get_arguments(): + """Parse all the arguments provided from the CLI. + Returns: + A list of parsed arguments. + """ + parser = argparse.ArgumentParser(description="Self Correction for Human Parsing") + + # Network Structure + parser.add_argument("--arch", type=str, default='resnet101') + # Data Preference + parser.add_argument("--data-dir", type=str, default='./data/LIP') + parser.add_argument("--batch-size", type=int, default=16) + parser.add_argument("--input-size", type=str, default='473,473') + parser.add_argument("--num-classes", type=int, default=20) + parser.add_argument("--ignore-label", type=int, default=255) + parser.add_argument("--random-mirror", action="store_true") + parser.add_argument("--random-scale", action="store_true") + # Training Strategy + parser.add_argument("--learning-rate", type=float, default=7e-3) + parser.add_argument("--momentum", type=float, default=0.9) + parser.add_argument("--weight-decay", type=float, default=5e-4) + parser.add_argument("--gpu", type=str, default='0,1,2') + parser.add_argument("--start-epoch", type=int, default=0) + parser.add_argument("--epochs", type=int, default=150) + parser.add_argument("--eval-epochs", type=int, default=10) + parser.add_argument("--imagenet-pretrain", type=str, default='./pretrain_model/resnet101-imagenet.pth') + parser.add_argument("--log-dir", type=str, default='./log') + parser.add_argument("--model-restore", type=str, default='./log/checkpoint.pth.tar') + parser.add_argument("--schp-start", type=int, default=100, help='schp start epoch') + parser.add_argument("--cycle-epochs", type=int, default=10, help='schp cyclical epoch') + parser.add_argument("--schp-restore", type=str, default='./log/schp_checkpoint.pth.tar') + parser.add_argument("--lambda-s", type=float, default=1, help='segmentation loss weight') + parser.add_argument("--lambda-e", type=float, default=1, help='edge loss weight') + parser.add_argument("--lambda-c", type=float, default=0.1, help='segmentation-edge consistency loss weight') + return parser.parse_args() + + +def main(): + args = get_arguments() + print(args) + + start_epoch = 0 + cycle_n = 0 + + if not os.path.exists(args.log_dir): + os.makedirs(args.log_dir) + with open(os.path.join(args.log_dir, 'args.json'), 'w') as opt_file: + json.dump(vars(args), opt_file) + + gpus = [int(i) for i in args.gpu.split(',')] + if not args.gpu == 'None': + os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu + + input_size = list(map(int, args.input_size.split(','))) + + cudnn.enabled = True + cudnn.benchmark = True + + # Model Initialization + AugmentCE2P = networks.init_model(args.arch, num_classes=args.num_classes, pretrained=args.imagenet_pretrain) + model = DataParallelModel(AugmentCE2P) + model.cuda() + + IMAGE_MEAN = AugmentCE2P.mean + IMAGE_STD = AugmentCE2P.std + INPUT_SPACE = AugmentCE2P.input_space + print('image mean: {}'.format(IMAGE_MEAN)) + print('image std: {}'.format(IMAGE_STD)) + print('input space:{}'.format(INPUT_SPACE)) + + restore_from = args.model_restore + if os.path.exists(restore_from): + print('Resume training from {}'.format(restore_from)) + checkpoint = torch.load(restore_from) + model.load_state_dict(checkpoint['state_dict']) + start_epoch = checkpoint['epoch'] + + SCHP_AugmentCE2P = networks.init_model(args.arch, num_classes=args.num_classes, pretrained=args.imagenet_pretrain) + schp_model = DataParallelModel(SCHP_AugmentCE2P) + schp_model.cuda() + + if os.path.exists(args.schp_restore): + print('Resuming schp checkpoint from {}'.format(args.schp_restore)) + schp_checkpoint = torch.load(args.schp_restore) + schp_model_state_dict = schp_checkpoint['state_dict'] + cycle_n = schp_checkpoint['cycle_n'] + schp_model.load_state_dict(schp_model_state_dict) + + # Loss Function + criterion = CriterionAll(lambda_1=args.lambda_s, lambda_2=args.lambda_e, lambda_3=args.lambda_c, + num_classes=args.num_classes) + criterion = DataParallelCriterion(criterion) + criterion.cuda() + + # Data Loader + if INPUT_SPACE == 'BGR': + print('BGR Transformation') + transform = transforms.Compose([ + transforms.ToTensor(), + transforms.Normalize(mean=IMAGE_MEAN, + std=IMAGE_STD), + ]) + + elif INPUT_SPACE == 'RGB': + print('RGB Transformation') + transform = transforms.Compose([ + transforms.ToTensor(), + BGR2RGB_transform(), + transforms.Normalize(mean=IMAGE_MEAN, + std=IMAGE_STD), + ]) + + train_dataset = LIPDataSet(args.data_dir, 'train', crop_size=input_size, transform=transform) + train_loader = data.DataLoader(train_dataset, batch_size=args.batch_size * len(gpus), + num_workers=16, shuffle=True, pin_memory=True, drop_last=True) + print('Total training samples: {}'.format(len(train_dataset))) + + # Optimizer Initialization + optimizer = optim.SGD(model.parameters(), lr=args.learning_rate, momentum=args.momentum, + weight_decay=args.weight_decay) + + lr_scheduler = SGDRScheduler(optimizer, total_epoch=args.epochs, + eta_min=args.learning_rate / 100, warmup_epoch=10, + start_cyclical=args.schp_start, cyclical_base_lr=args.learning_rate / 2, + cyclical_epoch=args.cycle_epochs) + + total_iters = args.epochs * len(train_loader) + start = timeit.default_timer() + for epoch in range(start_epoch, args.epochs): + lr_scheduler.step(epoch=epoch) + lr = lr_scheduler.get_lr()[0] + + model.train() + for i_iter, batch in enumerate(train_loader): + i_iter += len(train_loader) * epoch + + images, labels, _ = batch + labels = labels.cuda(non_blocking=True) + + edges = generate_edge_tensor(labels) + labels = labels.type(torch.cuda.LongTensor) + edges = edges.type(torch.cuda.LongTensor) + + preds = model(images) + + # Online Self Correction Cycle with Label Refinement + if cycle_n >= 1: + with torch.no_grad(): + soft_preds = schp_model(images) + soft_parsing = [] + soft_edge = [] + for soft_pred in soft_preds: + soft_parsing.append(soft_pred[0][-1]) + soft_edge.append(soft_pred[1][-1]) + soft_preds = torch.cat(soft_parsing, dim=0) + soft_edges = torch.cat(soft_edge, dim=0) + else: + soft_preds = None + soft_edges = None + + loss = criterion(preds, [labels, edges, soft_preds, soft_edges], cycle_n) + + optimizer.zero_grad() + loss.backward() + optimizer.step() + + if i_iter % 100 == 0: + print('iter = {} of {} completed, lr = {}, loss = {}'.format(i_iter, total_iters, lr, + loss.data.cpu().numpy())) + if (epoch + 1) % (args.eval_epochs) == 0: + schp.save_schp_checkpoint({ + 'epoch': epoch + 1, + 'state_dict': model.state_dict(), + }, False, args.log_dir, filename='checkpoint_{}.pth.tar'.format(epoch + 1)) + + # Self Correction Cycle with Model Aggregation + if (epoch + 1) >= args.schp_start and (epoch + 1 - args.schp_start) % args.cycle_epochs == 0: + print('Self-correction cycle number {}'.format(cycle_n)) + schp.moving_average(schp_model, model, 1.0 / (cycle_n + 1)) + cycle_n += 1 + schp.bn_re_estimate(train_loader, schp_model) + schp.save_schp_checkpoint({ + 'state_dict': schp_model.state_dict(), + 'cycle_n': cycle_n, + }, False, args.log_dir, filename='schp_{}_checkpoint.pth.tar'.format(cycle_n)) + + torch.cuda.empty_cache() + end = timeit.default_timer() + print('epoch = {} of {} completed using {} s'.format(epoch, args.epochs, + (end - start) / (epoch - start_epoch + 1))) + + end = timeit.default_timer() + print('Training Finished in {} seconds'.format(end - start)) + + +if __name__ == '__main__': + main() diff --git a/app/models/schp/utils/__init__.py b/app/models/schp/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/app/models/schp/utils/consistency_loss.py b/app/models/schp/utils/consistency_loss.py new file mode 100644 index 0000000000000000000000000000000000000000..b872fdcc10ecef02762399278191e48e79ea9a1f --- /dev/null +++ b/app/models/schp/utils/consistency_loss.py @@ -0,0 +1,33 @@ +#!/usr/bin/env python +# -*- encoding: utf-8 -*- + +""" +@Author : Peike Li +@Contact : peike.li@yahoo.com +@File : kl_loss.py +@Time : 7/23/19 4:02 PM +@Desc : +@License : This source code is licensed under the license found in the + LICENSE file in the root directory of this source tree. +""" +import torch +import torch.nn.functional as F +from torch import nn +from datasets.target_generation import generate_edge_tensor + + +class ConsistencyLoss(nn.Module): + def __init__(self, ignore_index=255): + super(ConsistencyLoss, self).__init__() + self.ignore_index=ignore_index + + def forward(self, parsing, edge, label): + parsing_pre = torch.argmax(parsing, dim=1) + parsing_pre[label==self.ignore_index]=self.ignore_index + generated_edge = generate_edge_tensor(parsing_pre) + edge_pre = torch.argmax(edge, dim=1) + v_generate_edge = generated_edge[label!=255] + v_edge_pre = edge_pre[label!=255] + v_edge_pre = v_edge_pre.type(torch.cuda.FloatTensor) + positive_union = (v_generate_edge==1)&(v_edge_pre==1) # only the positive values count + return F.smooth_l1_loss(v_generate_edge[positive_union].squeeze(0), v_edge_pre[positive_union].squeeze(0)) diff --git a/app/models/schp/utils/criterion.py b/app/models/schp/utils/criterion.py new file mode 100644 index 0000000000000000000000000000000000000000..968894319042331482692e42804f103074e4b710 --- /dev/null +++ b/app/models/schp/utils/criterion.py @@ -0,0 +1,142 @@ +#!/usr/bin/env python +# -*- encoding: utf-8 -*- + +""" +@Author : Peike Li +@Contact : peike.li@yahoo.com +@File : criterion.py +@Time : 8/30/19 8:59 PM +@Desc : +@License : This source code is licensed under the license found in the + LICENSE file in the root directory of this source tree. +""" + +import torch.nn as nn +import torch +import numpy as np +from torch.nn import functional as F +from .lovasz_softmax import LovaszSoftmax +from .kl_loss import KLDivergenceLoss +from .consistency_loss import ConsistencyLoss + +NUM_CLASSES = 20 + + +class CriterionAll(nn.Module): + def __init__(self, use_class_weight=False, ignore_index=255, lambda_1=1, lambda_2=1, lambda_3=1, + num_classes=20): + super(CriterionAll, self).__init__() + self.ignore_index = ignore_index + self.use_class_weight = use_class_weight + self.criterion = torch.nn.CrossEntropyLoss(ignore_index=ignore_index) + self.lovasz = LovaszSoftmax(ignore_index=ignore_index) + self.kldiv = KLDivergenceLoss(ignore_index=ignore_index) + self.reg = ConsistencyLoss(ignore_index=ignore_index) + self.lamda_1 = lambda_1 + self.lamda_2 = lambda_2 + self.lamda_3 = lambda_3 + self.num_classes = num_classes + + def parsing_loss(self, preds, target, cycle_n=None): + """ + Loss function definition. + + Args: + preds: [[parsing result1, parsing result2],[edge result]] + target: [parsing label, egde label] + soft_preds: [[parsing result1, parsing result2],[edge result]] + Returns: + Calculated Loss. + """ + h, w = target[0].size(1), target[0].size(2) + + pos_num = torch.sum(target[1] == 1, dtype=torch.float) + neg_num = torch.sum(target[1] == 0, dtype=torch.float) + + weight_pos = neg_num / (pos_num + neg_num) + weight_neg = pos_num / (pos_num + neg_num) + weights = torch.tensor([weight_neg, weight_pos]) # edge loss weight + + loss = 0 + + # loss for segmentation + preds_parsing = preds[0] + for pred_parsing in preds_parsing: + scale_pred = F.interpolate(input=pred_parsing, size=(h, w), + mode='bilinear', align_corners=True) + + loss += 0.5 * self.lamda_1 * self.lovasz(scale_pred, target[0]) + if target[2] is None: + loss += 0.5 * self.lamda_1 * self.criterion(scale_pred, target[0]) + else: + soft_scale_pred = F.interpolate(input=target[2], size=(h, w), + mode='bilinear', align_corners=True) + soft_scale_pred = moving_average(soft_scale_pred, to_one_hot(target[0], num_cls=self.num_classes), + 1.0 / (cycle_n + 1.0)) + loss += 0.5 * self.lamda_1 * self.kldiv(scale_pred, soft_scale_pred, target[0]) + + # loss for edge + preds_edge = preds[1] + for pred_edge in preds_edge: + scale_pred = F.interpolate(input=pred_edge, size=(h, w), + mode='bilinear', align_corners=True) + if target[3] is None: + loss += self.lamda_2 * F.cross_entropy(scale_pred, target[1], + weights.cuda(), ignore_index=self.ignore_index) + else: + soft_scale_edge = F.interpolate(input=target[3], size=(h, w), + mode='bilinear', align_corners=True) + soft_scale_edge = moving_average(soft_scale_edge, to_one_hot(target[1], num_cls=2), + 1.0 / (cycle_n + 1.0)) + loss += self.lamda_2 * self.kldiv(scale_pred, soft_scale_edge, target[0]) + + # consistency regularization + preds_parsing = preds[0] + preds_edge = preds[1] + for pred_parsing in preds_parsing: + scale_pred = F.interpolate(input=pred_parsing, size=(h, w), + mode='bilinear', align_corners=True) + scale_edge = F.interpolate(input=preds_edge[0], size=(h, w), + mode='bilinear', align_corners=True) + loss += self.lamda_3 * self.reg(scale_pred, scale_edge, target[0]) + + return loss + + def forward(self, preds, target, cycle_n=None): + loss = self.parsing_loss(preds, target, cycle_n) + return loss + + def _generate_weights(self, masks, num_classes): + """ + masks: torch.Tensor with shape [B, H, W] + """ + masks_label = masks.data.cpu().numpy().astype(np.int64) + pixel_nums = [] + tot_pixels = 0 + for i in range(num_classes): + pixel_num_of_cls_i = np.sum(masks_label == i).astype(np.float) + pixel_nums.append(pixel_num_of_cls_i) + tot_pixels += pixel_num_of_cls_i + weights = [] + for i in range(num_classes): + weights.append( + (tot_pixels - pixel_nums[i]) / tot_pixels / (num_classes - 1) + ) + weights = np.array(weights, dtype=np.float) + # weights = torch.from_numpy(weights).float().to(masks.device) + return weights + + +def moving_average(target1, target2, alpha=1.0): + target = 0 + target += (1.0 - alpha) * target1 + target += target2 * alpha + return target + + +def to_one_hot(tensor, num_cls, dim=1, ignore_index=255): + b, h, w = tensor.shape + tensor[tensor == ignore_index] = 0 + onehot_tensor = torch.zeros(b, num_cls, h, w).cuda() + onehot_tensor.scatter_(dim, tensor.unsqueeze(dim), 1) + return onehot_tensor diff --git a/app/models/schp/utils/encoding.py b/app/models/schp/utils/encoding.py new file mode 100644 index 0000000000000000000000000000000000000000..e8654706c345e8a13219f2c8e4cfa7700f531612 --- /dev/null +++ b/app/models/schp/utils/encoding.py @@ -0,0 +1,188 @@ +##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +## Created by: Hang Zhang +## ECE Department, Rutgers University +## Email: zhang.hang@rutgers.edu +## Copyright (c) 2017 +## +## This source code is licensed under the MIT-style license found in the +## LICENSE file in the root directory of this source tree +##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ + +"""Encoding Data Parallel""" +import threading +import functools +import torch +from torch.autograd import Variable, Function +import torch.cuda.comm as comm +from torch.nn.parallel.data_parallel import DataParallel +from torch.nn.parallel.parallel_apply import get_a_var +from torch.nn.parallel._functions import ReduceAddCoalesced, Broadcast + +torch_ver = torch.__version__[:3] + +__all__ = ['allreduce', 'DataParallelModel', 'DataParallelCriterion', 'patch_replication_callback'] + +def allreduce(*inputs): + """Cross GPU all reduce autograd operation for calculate mean and + variance in SyncBN. + """ + return AllReduce.apply(*inputs) + +class AllReduce(Function): + @staticmethod + def forward(ctx, num_inputs, *inputs): + ctx.num_inputs = num_inputs + ctx.target_gpus = [inputs[i].get_device() for i in range(0, len(inputs), num_inputs)] + inputs = [inputs[i:i + num_inputs] + for i in range(0, len(inputs), num_inputs)] + # sort before reduce sum + inputs = sorted(inputs, key=lambda i: i[0].get_device()) + results = comm.reduce_add_coalesced(inputs, ctx.target_gpus[0]) + outputs = comm.broadcast_coalesced(results, ctx.target_gpus) + return tuple([t for tensors in outputs for t in tensors]) + + @staticmethod + def backward(ctx, *inputs): + inputs = [i.data for i in inputs] + inputs = [inputs[i:i + ctx.num_inputs] + for i in range(0, len(inputs), ctx.num_inputs)] + results = comm.reduce_add_coalesced(inputs, ctx.target_gpus[0]) + outputs = comm.broadcast_coalesced(results, ctx.target_gpus) + return (None,) + tuple([Variable(t) for tensors in outputs for t in tensors]) + +class Reduce(Function): + @staticmethod + def forward(ctx, *inputs): + ctx.target_gpus = [inputs[i].get_device() for i in range(len(inputs))] + inputs = sorted(inputs, key=lambda i: i.get_device()) + return comm.reduce_add(inputs) + + @staticmethod + def backward(ctx, gradOutput): + return Broadcast.apply(ctx.target_gpus, gradOutput) + + +class DataParallelModel(DataParallel): + """Implements data parallelism at the module level. + + This container parallelizes the application of the given module by + splitting the input across the specified devices by chunking in the + batch dimension. + In the forward pass, the module is replicated on each device, + and each replica handles a portion of the input. During the backwards pass, gradients from each replica are summed into the original module. + Note that the outputs are not gathered, please use compatible + :class:`encoding.parallel.DataParallelCriterion`. + + The batch size should be larger than the number of GPUs used. It should + also be an integer multiple of the number of GPUs so that each chunk is + the same size (so that each GPU processes the same number of samples). + + Args: + module: module to be parallelized + device_ids: CUDA devices (default: all devices) + + Reference: + Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, + Amit Agrawal. “Context Encoding for Semantic Segmentation. + *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018* + + Example:: + + >>> net = encoding.nn.DataParallelModel(model, device_ids=[0, 1, 2]) + >>> y = net(x) + """ + def gather(self, outputs, output_device): + return outputs + + def replicate(self, module, device_ids): + modules = super(DataParallelModel, self).replicate(module, device_ids) + return modules + + +class DataParallelCriterion(DataParallel): + """ + Calculate loss in multiple-GPUs, which balance the memory usage for + Semantic Segmentation. + + The targets are splitted across the specified devices by chunking in + the batch dimension. Please use together with :class:`encoding.parallel.DataParallelModel`. + + Reference: + Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, + Amit Agrawal. “Context Encoding for Semantic Segmentation. + *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018* + + Example:: + + >>> net = encoding.nn.DataParallelModel(model, device_ids=[0, 1, 2]) + >>> criterion = encoding.nn.DataParallelCriterion(criterion, device_ids=[0, 1, 2]) + >>> y = net(x) + >>> loss = criterion(y, target) + """ + def forward(self, inputs, *targets, **kwargs): + # input should be already scatterd + # scattering the targets instead + if not self.device_ids: + return self.module(inputs, *targets, **kwargs) + targets, kwargs = self.scatter(targets, kwargs, self.device_ids) + if len(self.device_ids) == 1: + return self.module(inputs, *targets[0], **kwargs[0]) + replicas = self.replicate(self.module, self.device_ids[:len(inputs)]) + outputs = _criterion_parallel_apply(replicas, inputs, targets, kwargs) + return Reduce.apply(*outputs) / len(outputs) + + +def _criterion_parallel_apply(modules, inputs, targets, kwargs_tup=None, devices=None): + assert len(modules) == len(inputs) + assert len(targets) == len(inputs) + if kwargs_tup: + assert len(modules) == len(kwargs_tup) + else: + kwargs_tup = ({},) * len(modules) + if devices is not None: + assert len(modules) == len(devices) + else: + devices = [None] * len(modules) + + lock = threading.Lock() + results = {} + if torch_ver != "0.3": + grad_enabled = torch.is_grad_enabled() + + def _worker(i, module, input, target, kwargs, device=None): + if torch_ver != "0.3": + torch.set_grad_enabled(grad_enabled) + if device is None: + device = get_a_var(input).get_device() + try: + if not isinstance(input, tuple): + input = (input,) + with torch.cuda.device(device): + output = module(*(input + target), **kwargs) + with lock: + results[i] = output + except Exception as e: + with lock: + results[i] = e + + if len(modules) > 1: + threads = [threading.Thread(target=_worker, + args=(i, module, input, target, + kwargs, device),) + for i, (module, input, target, kwargs, device) in + enumerate(zip(modules, inputs, targets, kwargs_tup, devices))] + + for thread in threads: + thread.start() + for thread in threads: + thread.join() + else: + _worker(0, modules[0], inputs[0], kwargs_tup[0], devices[0]) + + outputs = [] + for i in range(len(inputs)): + output = results[i] + if isinstance(output, Exception): + raise output + outputs.append(output) + return outputs diff --git a/app/models/schp/utils/kl_loss.py b/app/models/schp/utils/kl_loss.py new file mode 100644 index 0000000000000000000000000000000000000000..9a685d945fb852a81324513ae55498857f1a4552 --- /dev/null +++ b/app/models/schp/utils/kl_loss.py @@ -0,0 +1,44 @@ +#!/usr/bin/env python +# -*- encoding: utf-8 -*- + +""" +@Author : Peike Li +@Contact : peike.li@yahoo.com +@File : kl_loss.py +@Time : 7/23/19 4:02 PM +@Desc : +@License : This source code is licensed under the license found in the + LICENSE file in the root directory of this source tree. +""" +import torch +import torch.nn.functional as F +from torch import nn + + +def flatten_probas(input, target, labels, ignore=255): + """ + Flattens predictions in the batch. + """ + B, C, H, W = input.size() + input = input.permute(0, 2, 3, 1).contiguous().view(-1, C) # B * H * W, C = P, C + target = target.permute(0, 2, 3, 1).contiguous().view(-1, C) # B * H * W, C = P, C + labels = labels.view(-1) + if ignore is None: + return input, target + valid = (labels != ignore) + vinput = input[valid.nonzero().squeeze()] + vtarget = target[valid.nonzero().squeeze()] + return vinput, vtarget + + +class KLDivergenceLoss(nn.Module): + def __init__(self, ignore_index=255, T=1): + super(KLDivergenceLoss, self).__init__() + self.ignore_index=ignore_index + self.T = T + + def forward(self, input, target, label): + log_input_prob = F.log_softmax(input / self.T, dim=1) + target_porb = F.softmax(target / self.T, dim=1) + loss = F.kl_div(*flatten_probas(log_input_prob, target_porb, label, ignore=self.ignore_index)) + return self.T*self.T*loss # balanced diff --git a/app/models/schp/utils/lovasz_softmax.py b/app/models/schp/utils/lovasz_softmax.py new file mode 100644 index 0000000000000000000000000000000000000000..b6e444f684c0d9bda9d7c2d54a4e79fac0ddf081 --- /dev/null +++ b/app/models/schp/utils/lovasz_softmax.py @@ -0,0 +1,279 @@ +#!/usr/bin/env python +# -*- encoding: utf-8 -*- + +""" +@Author : Peike Li +@Contact : peike.li@yahoo.com +@File : lovasz_softmax.py +@Time : 8/30/19 7:12 PM +@Desc : Lovasz-Softmax and Jaccard hinge loss in PyTorch + Maxim Berman 2018 ESAT-PSI KU Leuven (MIT License) +@License : This source code is licensed under the license found in the + LICENSE file in the root directory of this source tree. +""" + +from __future__ import print_function, division + +import torch +from torch.autograd import Variable +import torch.nn.functional as F +import numpy as np +from torch import nn + +try: + from itertools import ifilterfalse +except ImportError: # py3k + from itertools import filterfalse as ifilterfalse + + +def lovasz_grad(gt_sorted): + """ + Computes gradient of the Lovasz extension w.r.t sorted errors + See Alg. 1 in paper + """ + p = len(gt_sorted) + gts = gt_sorted.sum() + intersection = gts - gt_sorted.float().cumsum(0) + union = gts + (1 - gt_sorted).float().cumsum(0) + jaccard = 1. - intersection / union + if p > 1: # cover 1-pixel case + jaccard[1:p] = jaccard[1:p] - jaccard[0:-1] + return jaccard + + +def iou_binary(preds, labels, EMPTY=1., ignore=None, per_image=True): + """ + IoU for foreground class + binary: 1 foreground, 0 background + """ + if not per_image: + preds, labels = (preds,), (labels,) + ious = [] + for pred, label in zip(preds, labels): + intersection = ((label == 1) & (pred == 1)).sum() + union = ((label == 1) | ((pred == 1) & (label != ignore))).sum() + if not union: + iou = EMPTY + else: + iou = float(intersection) / float(union) + ious.append(iou) + iou = mean(ious) # mean accross images if per_image + return 100 * iou + + +def iou(preds, labels, C, EMPTY=1., ignore=None, per_image=False): + """ + Array of IoU for each (non ignored) class + """ + if not per_image: + preds, labels = (preds,), (labels,) + ious = [] + for pred, label in zip(preds, labels): + iou = [] + for i in range(C): + if i != ignore: # The ignored label is sometimes among predicted classes (ENet - CityScapes) + intersection = ((label == i) & (pred == i)).sum() + union = ((label == i) | ((pred == i) & (label != ignore))).sum() + if not union: + iou.append(EMPTY) + else: + iou.append(float(intersection) / float(union)) + ious.append(iou) + ious = [mean(iou) for iou in zip(*ious)] # mean accross images if per_image + return 100 * np.array(ious) + + +# --------------------------- BINARY LOSSES --------------------------- + + +def lovasz_hinge(logits, labels, per_image=True, ignore=None): + """ + Binary Lovasz hinge loss + logits: [B, H, W] Variable, logits at each pixel (between -\infty and +\infty) + labels: [B, H, W] Tensor, binary ground truth masks (0 or 1) + per_image: compute the loss per image instead of per batch + ignore: void class id + """ + if per_image: + loss = mean(lovasz_hinge_flat(*flatten_binary_scores(log.unsqueeze(0), lab.unsqueeze(0), ignore)) + for log, lab in zip(logits, labels)) + else: + loss = lovasz_hinge_flat(*flatten_binary_scores(logits, labels, ignore)) + return loss + + +def lovasz_hinge_flat(logits, labels): + """ + Binary Lovasz hinge loss + logits: [P] Variable, logits at each prediction (between -\infty and +\infty) + labels: [P] Tensor, binary ground truth labels (0 or 1) + ignore: label to ignore + """ + if len(labels) == 0: + # only void pixels, the gradients should be 0 + return logits.sum() * 0. + signs = 2. * labels.float() - 1. + errors = (1. - logits * Variable(signs)) + errors_sorted, perm = torch.sort(errors, dim=0, descending=True) + perm = perm.data + gt_sorted = labels[perm] + grad = lovasz_grad(gt_sorted) + loss = torch.dot(F.relu(errors_sorted), Variable(grad)) + return loss + + +def flatten_binary_scores(scores, labels, ignore=None): + """ + Flattens predictions in the batch (binary case) + Remove labels equal to 'ignore' + """ + scores = scores.view(-1) + labels = labels.view(-1) + if ignore is None: + return scores, labels + valid = (labels != ignore) + vscores = scores[valid] + vlabels = labels[valid] + return vscores, vlabels + + +class StableBCELoss(torch.nn.modules.Module): + def __init__(self): + super(StableBCELoss, self).__init__() + + def forward(self, input, target): + neg_abs = - input.abs() + loss = input.clamp(min=0) - input * target + (1 + neg_abs.exp()).log() + return loss.mean() + + +def binary_xloss(logits, labels, ignore=None): + """ + Binary Cross entropy loss + logits: [B, H, W] Variable, logits at each pixel (between -\infty and +\infty) + labels: [B, H, W] Tensor, binary ground truth masks (0 or 1) + ignore: void class id + """ + logits, labels = flatten_binary_scores(logits, labels, ignore) + loss = StableBCELoss()(logits, Variable(labels.float())) + return loss + + +# --------------------------- MULTICLASS LOSSES --------------------------- + + +def lovasz_softmax(probas, labels, classes='present', per_image=False, ignore=255, weighted=None): + """ + Multi-class Lovasz-Softmax loss + probas: [B, C, H, W] Variable, class probabilities at each prediction (between 0 and 1). + Interpreted as binary (sigmoid) output with outputs of size [B, H, W]. + labels: [B, H, W] Tensor, ground truth labels (between 0 and C - 1) + classes: 'all' for all, 'present' for classes present in labels, or a list of classes to average. + per_image: compute the loss per image instead of per batch + ignore: void class labels + """ + if per_image: + loss = mean(lovasz_softmax_flat(*flatten_probas(prob.unsqueeze(0), lab.unsqueeze(0), ignore), classes=classes, weighted=weighted) + for prob, lab in zip(probas, labels)) + else: + loss = lovasz_softmax_flat(*flatten_probas(probas, labels, ignore), classes=classes, weighted=weighted ) + return loss + + +def lovasz_softmax_flat(probas, labels, classes='present', weighted=None): + """ + Multi-class Lovasz-Softmax loss + probas: [P, C] Variable, class probabilities at each prediction (between 0 and 1) + labels: [P] Tensor, ground truth labels (between 0 and C - 1) + classes: 'all' for all, 'present' for classes present in labels, or a list of classes to average. + """ + if probas.numel() == 0: + # only void pixels, the gradients should be 0 + return probas * 0. + C = probas.size(1) + losses = [] + class_to_sum = list(range(C)) if classes in ['all', 'present'] else classes + for c in class_to_sum: + fg = (labels == c).float() # foreground for class c + if (classes is 'present' and fg.sum() == 0): + continue + if C == 1: + if len(classes) > 1: + raise ValueError('Sigmoid output possible only with 1 class') + class_pred = probas[:, 0] + else: + class_pred = probas[:, c] + errors = (Variable(fg) - class_pred).abs() + errors_sorted, perm = torch.sort(errors, 0, descending=True) + perm = perm.data + fg_sorted = fg[perm] + if weighted is not None: + losses.append(weighted[c]*torch.dot(errors_sorted, Variable(lovasz_grad(fg_sorted)))) + else: + losses.append(torch.dot(errors_sorted, Variable(lovasz_grad(fg_sorted)))) + return mean(losses) + + +def flatten_probas(probas, labels, ignore=None): + """ + Flattens predictions in the batch + """ + if probas.dim() == 3: + # assumes output of a sigmoid layer + B, H, W = probas.size() + probas = probas.view(B, 1, H, W) + B, C, H, W = probas.size() + probas = probas.permute(0, 2, 3, 1).contiguous().view(-1, C) # B * H * W, C = P, C + labels = labels.view(-1) + if ignore is None: + return probas, labels + valid = (labels != ignore) + vprobas = probas[valid.nonzero().squeeze()] + vlabels = labels[valid] + return vprobas, vlabels + + +def xloss(logits, labels, ignore=None): + """ + Cross entropy loss + """ + return F.cross_entropy(logits, Variable(labels), ignore_index=255) + + +# --------------------------- HELPER FUNCTIONS --------------------------- +def isnan(x): + return x != x + + +def mean(l, ignore_nan=False, empty=0): + """ + nanmean compatible with generators. + """ + l = iter(l) + if ignore_nan: + l = ifilterfalse(isnan, l) + try: + n = 1 + acc = next(l) + except StopIteration: + if empty == 'raise': + raise ValueError('Empty mean') + return empty + for n, v in enumerate(l, 2): + acc += v + if n == 1: + return acc + return acc / n + +# --------------------------- Class --------------------------- +class LovaszSoftmax(nn.Module): + def __init__(self, per_image=False, ignore_index=255, weighted=None): + super(LovaszSoftmax, self).__init__() + self.lovasz_softmax = lovasz_softmax + self.per_image = per_image + self.ignore_index=ignore_index + self.weighted = weighted + + def forward(self, pred, label): + pred = F.softmax(pred, dim=1) + return self.lovasz_softmax(pred, label, per_image=self.per_image, ignore=self.ignore_index, weighted=self.weighted) \ No newline at end of file diff --git a/app/models/schp/utils/miou.py b/app/models/schp/utils/miou.py new file mode 100644 index 0000000000000000000000000000000000000000..51a2cc965a5c0cfd5497c9191906898da31485dd --- /dev/null +++ b/app/models/schp/utils/miou.py @@ -0,0 +1,155 @@ +import cv2 +import os +import numpy as np + +from collections import OrderedDict +from PIL import Image as PILImage +from utils.transforms import transform_parsing + +LABELS = ['Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', 'Dress', 'Coat', \ + 'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm', 'Right-arm', 'Left-leg', + 'Right-leg', 'Left-shoe', 'Right-shoe'] + + +# LABELS = ['Background', 'Head', 'Torso', 'Upper Arms', 'Lower Arms', 'Upper Legs', 'Lower Legs'] + +def get_palette(num_cls): + """ Returns the color map for visualizing the segmentation mask. + Args: + num_cls: Number of classes + Returns: + The color map + """ + + n = num_cls + palette = [0] * (n * 3) + for j in range(0, n): + lab = j + palette[j * 3 + 0] = 0 + palette[j * 3 + 1] = 0 + palette[j * 3 + 2] = 0 + i = 0 + while lab: + palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i)) + palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i)) + palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i)) + i += 1 + lab >>= 3 + return palette + + +def get_confusion_matrix(gt_label, pred_label, num_classes): + """ + Calcute the confusion matrix by given label and pred + :param gt_label: the ground truth label + :param pred_label: the pred label + :param num_classes: the nunber of class + :return: the confusion matrix + """ + index = (gt_label * num_classes + pred_label).astype('int32') + label_count = np.bincount(index) + confusion_matrix = np.zeros((num_classes, num_classes)) + + for i_label in range(num_classes): + for i_pred_label in range(num_classes): + cur_index = i_label * num_classes + i_pred_label + if cur_index < len(label_count): + confusion_matrix[i_label, i_pred_label] = label_count[cur_index] + + return confusion_matrix + + +def compute_mean_ioU(preds, scales, centers, num_classes, datadir, input_size=[473, 473], dataset='val'): + val_file = os.path.join(datadir, dataset + '_id.txt') + val_id = [i_id.strip() for i_id in open(val_file)] + + confusion_matrix = np.zeros((num_classes, num_classes)) + + for i, pred_out in enumerate(preds): + im_name = val_id[i] + gt_path = os.path.join(datadir, dataset + '_segmentations', im_name + '.png') + gt = np.array(PILImage.open(gt_path)) + h, w = gt.shape + s = scales[i] + c = centers[i] + pred = transform_parsing(pred_out, c, s, w, h, input_size) + + gt = np.asarray(gt, dtype=np.int32) + pred = np.asarray(pred, dtype=np.int32) + + ignore_index = gt != 255 + + gt = gt[ignore_index] + pred = pred[ignore_index] + + confusion_matrix += get_confusion_matrix(gt, pred, num_classes) + + pos = confusion_matrix.sum(1) + res = confusion_matrix.sum(0) + tp = np.diag(confusion_matrix) + + pixel_accuracy = (tp.sum() / pos.sum()) * 100 + mean_accuracy = ((tp / np.maximum(1.0, pos)).mean()) * 100 + IoU_array = (tp / np.maximum(1.0, pos + res - tp)) + IoU_array = IoU_array * 100 + mean_IoU = IoU_array.mean() + print('Pixel accuracy: %f \n' % pixel_accuracy) + print('Mean accuracy: %f \n' % mean_accuracy) + print('Mean IU: %f \n' % mean_IoU) + name_value = [] + + for i, (label, iou) in enumerate(zip(LABELS, IoU_array)): + name_value.append((label, iou)) + + name_value.append(('Pixel accuracy', pixel_accuracy)) + name_value.append(('Mean accuracy', mean_accuracy)) + name_value.append(('Mean IU', mean_IoU)) + name_value = OrderedDict(name_value) + return name_value + + +def compute_mean_ioU_file(preds_dir, num_classes, datadir, dataset='val'): + list_path = os.path.join(datadir, dataset + '_id.txt') + val_id = [i_id.strip() for i_id in open(list_path)] + + confusion_matrix = np.zeros((num_classes, num_classes)) + + for i, im_name in enumerate(val_id): + gt_path = os.path.join(datadir, 'segmentations', im_name + '.png') + gt = cv2.imread(gt_path, cv2.IMREAD_GRAYSCALE) + + pred_path = os.path.join(preds_dir, im_name + '.png') + pred = np.asarray(PILImage.open(pred_path)) + + gt = np.asarray(gt, dtype=np.int32) + pred = np.asarray(pred, dtype=np.int32) + + ignore_index = gt != 255 + + gt = gt[ignore_index] + pred = pred[ignore_index] + + confusion_matrix += get_confusion_matrix(gt, pred, num_classes) + + pos = confusion_matrix.sum(1) + res = confusion_matrix.sum(0) + tp = np.diag(confusion_matrix) + + pixel_accuracy = (tp.sum() / pos.sum()) * 100 + mean_accuracy = ((tp / np.maximum(1.0, pos)).mean()) * 100 + IoU_array = (tp / np.maximum(1.0, pos + res - tp)) + IoU_array = IoU_array * 100 + mean_IoU = IoU_array.mean() + print('Pixel accuracy: %f \n' % pixel_accuracy) + print('Mean accuracy: %f \n' % mean_accuracy) + print('Mean IU: %f \n' % mean_IoU) + name_value = [] + + for i, (label, iou) in enumerate(zip(LABELS, IoU_array)): + name_value.append((label, iou)) + + name_value.append(('Pixel accuracy', pixel_accuracy)) + name_value.append(('Mean accuracy', mean_accuracy)) + name_value.append(('Mean IU', mean_IoU)) + name_value = OrderedDict(name_value) + return name_value diff --git a/app/models/schp/utils/schp.py b/app/models/schp/utils/schp.py new file mode 100644 index 0000000000000000000000000000000000000000..f57470452fac8183dc5c17156439416c15bd3265 --- /dev/null +++ b/app/models/schp/utils/schp.py @@ -0,0 +1,80 @@ +#!/usr/bin/env python +# -*- encoding: utf-8 -*- + +""" +@Author : Peike Li +@Contact : peike.li@yahoo.com +@File : schp.py +@Time : 4/8/19 2:11 PM +@Desc : +@License : This source code is licensed under the license found in the + LICENSE file in the root directory of this source tree. +""" + +import os +import torch +import modules + +def moving_average(net1, net2, alpha=1): + for param1, param2 in zip(net1.parameters(), net2.parameters()): + param1.data *= (1.0 - alpha) + param1.data += param2.data * alpha + + +def _check_bn(module, flag): + if issubclass(module.__class__, modules.bn.InPlaceABNSync): + flag[0] = True + + +def check_bn(model): + flag = [False] + model.apply(lambda module: _check_bn(module, flag)) + return flag[0] + + +def reset_bn(module): + if issubclass(module.__class__, modules.bn.InPlaceABNSync): + module.running_mean = torch.zeros_like(module.running_mean) + module.running_var = torch.ones_like(module.running_var) + + +def _get_momenta(module, momenta): + if issubclass(module.__class__, modules.bn.InPlaceABNSync): + momenta[module] = module.momentum + + +def _set_momenta(module, momenta): + if issubclass(module.__class__, modules.bn.InPlaceABNSync): + module.momentum = momenta[module] + + +def bn_re_estimate(loader, model): + if not check_bn(model): + print('No batch norm layer detected') + return + model.train() + momenta = {} + model.apply(reset_bn) + model.apply(lambda module: _get_momenta(module, momenta)) + n = 0 + for i_iter, batch in enumerate(loader): + images, labels, _ = batch + b = images.data.size(0) + momentum = b / (n + b) + for module in momenta.keys(): + module.momentum = momentum + model(images) + n += b + model.apply(lambda module: _set_momenta(module, momenta)) + + +def save_schp_checkpoint(states, is_best_parsing, output_dir, filename='schp_checkpoint.pth.tar'): + save_path = os.path.join(output_dir, filename) + if os.path.exists(save_path): + os.remove(save_path) + torch.save(states, save_path) + if is_best_parsing and 'state_dict' in states: + best_save_path = os.path.join(output_dir, 'model_parsing_best.pth.tar') + if os.path.exists(best_save_path): + os.remove(best_save_path) + torch.save(states, best_save_path) diff --git a/app/models/schp/utils/soft_dice_loss.py b/app/models/schp/utils/soft_dice_loss.py new file mode 100644 index 0000000000000000000000000000000000000000..cb5895fd37467d36f213f941d1b01d6d6f7f194c --- /dev/null +++ b/app/models/schp/utils/soft_dice_loss.py @@ -0,0 +1,111 @@ +#!/usr/bin/env python +# -*- encoding: utf-8 -*- + +""" +@Author : Peike Li +@Contact : peike.li@yahoo.com +@File : soft_dice_loss.py +@Time : 8/13/19 5:09 PM +@Desc : +@License : This source code is licensed under the license found in the + LICENSE file in the root directory of this source tree. +""" + +from __future__ import print_function, division + +import torch +import torch.nn.functional as F +from torch import nn + +try: + from itertools import ifilterfalse +except ImportError: # py3k + from itertools import filterfalse as ifilterfalse + + +def tversky_loss(probas, labels, alpha=0.5, beta=0.5, epsilon=1e-6): + ''' + Tversky loss function. + probas: [P, C] Variable, class probabilities at each prediction (between 0 and 1) + labels: [P] Tensor, ground truth labels (between 0 and C - 1) + + Same as soft dice loss when alpha=beta=0.5. + Same as Jaccord loss when alpha=beta=1.0. + See `Tversky loss function for image segmentation using 3D fully convolutional deep networks` + https://arxiv.org/pdf/1706.05721.pdf + ''' + C = probas.size(1) + losses = [] + for c in list(range(C)): + fg = (labels == c).float() + if fg.sum() == 0: + continue + class_pred = probas[:, c] + p0 = class_pred + p1 = 1 - class_pred + g0 = fg + g1 = 1 - fg + numerator = torch.sum(p0 * g0) + denominator = numerator + alpha * torch.sum(p0 * g1) + beta * torch.sum(p1 * g0) + losses.append(1 - ((numerator) / (denominator + epsilon))) + return mean(losses) + + +def flatten_probas(probas, labels, ignore=255): + """ + Flattens predictions in the batch + """ + B, C, H, W = probas.size() + probas = probas.permute(0, 2, 3, 1).contiguous().view(-1, C) # B * H * W, C = P, C + labels = labels.view(-1) + if ignore is None: + return probas, labels + valid = (labels != ignore) + vprobas = probas[valid.nonzero().squeeze()] + vlabels = labels[valid] + return vprobas, vlabels + + +def isnan(x): + return x != x + + +def mean(l, ignore_nan=False, empty=0): + """ + nanmean compatible with generators. + """ + l = iter(l) + if ignore_nan: + l = ifilterfalse(isnan, l) + try: + n = 1 + acc = next(l) + except StopIteration: + if empty == 'raise': + raise ValueError('Empty mean') + return empty + for n, v in enumerate(l, 2): + acc += v + if n == 1: + return acc + return acc / n + + +class SoftDiceLoss(nn.Module): + def __init__(self, ignore_index=255): + super(SoftDiceLoss, self).__init__() + self.ignore_index = ignore_index + + def forward(self, pred, label): + pred = F.softmax(pred, dim=1) + return tversky_loss(*flatten_probas(pred, label, ignore=self.ignore_index), alpha=0.5, beta=0.5) + + +class SoftJaccordLoss(nn.Module): + def __init__(self, ignore_index=255): + super(SoftJaccordLoss, self).__init__() + self.ignore_index = ignore_index + + def forward(self, pred, label): + pred = F.softmax(pred, dim=1) + return tversky_loss(*flatten_probas(pred, label, ignore=self.ignore_index), alpha=1.0, beta=1.0) diff --git a/app/models/schp/utils/transforms.py b/app/models/schp/utils/transforms.py new file mode 100644 index 0000000000000000000000000000000000000000..1442a728938ca19fcb4ac21ae6588266df45631c --- /dev/null +++ b/app/models/schp/utils/transforms.py @@ -0,0 +1,167 @@ +# ------------------------------------------------------------------------------ +# Copyright (c) Microsoft +# Licensed under the MIT License. +# Written by Bin Xiao (Bin.Xiao@microsoft.com) +# ------------------------------------------------------------------------------ + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import numpy as np +import cv2 +import torch + +class BRG2Tensor_transform(object): + def __call__(self, pic): + img = torch.from_numpy(pic.transpose((2, 0, 1))) + if isinstance(img, torch.ByteTensor): + return img.float() + else: + return img + +class BGR2RGB_transform(object): + def __call__(self, tensor): + return tensor[[2,1,0],:,:] + +def flip_back(output_flipped, matched_parts): + ''' + ouput_flipped: numpy.ndarray(batch_size, num_joints, height, width) + ''' + assert output_flipped.ndim == 4,\ + 'output_flipped should be [batch_size, num_joints, height, width]' + + output_flipped = output_flipped[:, :, :, ::-1] + + for pair in matched_parts: + tmp = output_flipped[:, pair[0], :, :].copy() + output_flipped[:, pair[0], :, :] = output_flipped[:, pair[1], :, :] + output_flipped[:, pair[1], :, :] = tmp + + return output_flipped + + +def fliplr_joints(joints, joints_vis, width, matched_parts): + """ + flip coords + """ + # Flip horizontal + joints[:, 0] = width - joints[:, 0] - 1 + + # Change left-right parts + for pair in matched_parts: + joints[pair[0], :], joints[pair[1], :] = \ + joints[pair[1], :], joints[pair[0], :].copy() + joints_vis[pair[0], :], joints_vis[pair[1], :] = \ + joints_vis[pair[1], :], joints_vis[pair[0], :].copy() + + return joints*joints_vis, joints_vis + + +def transform_preds(coords, center, scale, input_size): + target_coords = np.zeros(coords.shape) + trans = get_affine_transform(center, scale, 0, input_size, inv=1) + for p in range(coords.shape[0]): + target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans) + return target_coords + +def transform_parsing(pred, center, scale, width, height, input_size): + + trans = get_affine_transform(center, scale, 0, input_size, inv=1) + target_pred = cv2.warpAffine( + pred, + trans, + (int(width), int(height)), #(int(width), int(height)), + flags=cv2.INTER_NEAREST, + borderMode=cv2.BORDER_CONSTANT, + borderValue=(0)) + + return target_pred + +def transform_logits(logits, center, scale, width, height, input_size): + + trans = get_affine_transform(center, scale, 0, input_size, inv=1) + channel = logits.shape[2] + target_logits = [] + for i in range(channel): + target_logit = cv2.warpAffine( + logits[:,:,i], + trans, + (int(width), int(height)), #(int(width), int(height)), + flags=cv2.INTER_LINEAR, + borderMode=cv2.BORDER_CONSTANT, + borderValue=(0)) + target_logits.append(target_logit) + target_logits = np.stack(target_logits,axis=2) + + return target_logits + + +def get_affine_transform(center, + scale, + rot, + output_size, + shift=np.array([0, 0], dtype=np.float32), + inv=0): + if not isinstance(scale, np.ndarray) and not isinstance(scale, list): + print(scale) + scale = np.array([scale, scale]) + + scale_tmp = scale + + src_w = scale_tmp[0] + dst_w = output_size[1] + dst_h = output_size[0] + + rot_rad = np.pi * rot / 180 + src_dir = get_dir([0, src_w * -0.5], rot_rad) + dst_dir = np.array([0, (dst_w-1) * -0.5], np.float32) + + src = np.zeros((3, 2), dtype=np.float32) + dst = np.zeros((3, 2), dtype=np.float32) + src[0, :] = center + scale_tmp * shift + src[1, :] = center + src_dir + scale_tmp * shift + dst[0, :] = [(dst_w-1) * 0.5, (dst_h-1) * 0.5] + dst[1, :] = np.array([(dst_w-1) * 0.5, (dst_h-1) * 0.5]) + dst_dir + + src[2:, :] = get_3rd_point(src[0, :], src[1, :]) + dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :]) + + if inv: + trans = cv2.getAffineTransform(np.float32(dst), np.float32(src)) + else: + trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) + + return trans + + +def affine_transform(pt, t): + new_pt = np.array([pt[0], pt[1], 1.]).T + new_pt = np.dot(t, new_pt) + return new_pt[:2] + + +def get_3rd_point(a, b): + direct = a - b + return b + np.array([-direct[1], direct[0]], dtype=np.float32) + + +def get_dir(src_point, rot_rad): + sn, cs = np.sin(rot_rad), np.cos(rot_rad) + + src_result = [0, 0] + src_result[0] = src_point[0] * cs - src_point[1] * sn + src_result[1] = src_point[0] * sn + src_point[1] * cs + + return src_result + + +def crop(img, center, scale, output_size, rot=0): + trans = get_affine_transform(center, scale, rot, output_size) + + dst_img = cv2.warpAffine(img, + trans, + (int(output_size[1]), int(output_size[0])), + flags=cv2.INTER_LINEAR) + + return dst_img diff --git a/app/models/schp/utils/warmup_scheduler.py b/app/models/schp/utils/warmup_scheduler.py new file mode 100644 index 0000000000000000000000000000000000000000..2528a9c598d5ee3477d60e2f8591ec37e8afb41d --- /dev/null +++ b/app/models/schp/utils/warmup_scheduler.py @@ -0,0 +1,71 @@ +#!/usr/bin/env python +# -*- encoding: utf-8 -*- + +""" +@Author : Peike Li +@Contact : peike.li@yahoo.com +@File : warmup_scheduler.py +@Time : 3/28/19 2:24 PM +@Desc : +@License : This source code is licensed under the license found in the + LICENSE file in the root directory of this source tree. +""" + +import math +from torch.optim.lr_scheduler import _LRScheduler + + +class GradualWarmupScheduler(_LRScheduler): + """ Gradually warm-up learning rate with cosine annealing in optimizer. + Proposed in 'Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour'. + """ + + def __init__(self, optimizer, total_epoch, eta_min=0, warmup_epoch=10, last_epoch=-1): + self.total_epoch = total_epoch + self.eta_min = eta_min + self.warmup_epoch = warmup_epoch + super(GradualWarmupScheduler, self).__init__(optimizer, last_epoch) + + def get_lr(self): + if self.last_epoch <= self.warmup_epoch: + return [self.eta_min + self.last_epoch*(base_lr - self.eta_min)/self.warmup_epoch for base_lr in self.base_lrs] + else: + return [self.eta_min + (base_lr-self.eta_min)*(1+math.cos(math.pi*(self.last_epoch-self.warmup_epoch)/(self.total_epoch-self.warmup_epoch))) / 2 for base_lr in self.base_lrs] + + +class SGDRScheduler(_LRScheduler): + """ Consine annealing with warm up and restarts. + Proposed in `SGDR: Stochastic Gradient Descent with Warm Restarts`. + """ + def __init__(self, optimizer, total_epoch=150, start_cyclical=100, cyclical_base_lr=7e-4, cyclical_epoch=10, eta_min=0, warmup_epoch=10, last_epoch=-1): + self.total_epoch = total_epoch + self.start_cyclical = start_cyclical + self.cyclical_epoch = cyclical_epoch + self.cyclical_base_lr = cyclical_base_lr + self.eta_min = eta_min + self.warmup_epoch = warmup_epoch + super(SGDRScheduler, self).__init__(optimizer, last_epoch) + + def get_lr(self): + if self.last_epoch < self.warmup_epoch: + return [self.eta_min + self.last_epoch*(base_lr - self.eta_min)/self.warmup_epoch for base_lr in self.base_lrs] + elif self.last_epoch < self.start_cyclical: + return [self.eta_min + (base_lr-self.eta_min)*(1+math.cos(math.pi*(self.last_epoch-self.warmup_epoch)/(self.start_cyclical-self.warmup_epoch))) / 2 for base_lr in self.base_lrs] + else: + return [self.eta_min + (self.cyclical_base_lr-self.eta_min)*(1+math.cos(math.pi* ((self.last_epoch-self.start_cyclical)% self.cyclical_epoch)/self.cyclical_epoch)) / 2 for base_lr in self.base_lrs] + + +if __name__ == '__main__': + import matplotlib.pyplot as plt + import torch + model = torch.nn.Linear(10, 2) + optimizer = torch.optim.SGD(params=model.parameters(), lr=7e-3, momentum=0.9, weight_decay=5e-4) + scheduler_warmup = SGDRScheduler(optimizer, total_epoch=150, eta_min=7e-5, warmup_epoch=10, start_cyclical=100, cyclical_base_lr=3.5e-3, cyclical_epoch=10) + lr = [] + for epoch in range(0,150): + scheduler_warmup.step(epoch) + lr.append(scheduler_warmup.get_lr()) + plt.style.use('ggplot') + plt.plot(list(range(0,150)), lr) + plt.show() + diff --git a/app/services/feature_extractor.py b/app/services/feature_extractor.py index b64f1bab42da89923dd039de431edca86c3257ba..76513d4883a335390dcc73e35fba18c9d93654c9 100644 --- a/app/services/feature_extractor.py +++ b/app/services/feature_extractor.py @@ -1,3 +1,5 @@ +from pathlib import Path + import numpy as np import torch import clip @@ -6,6 +8,10 @@ from PIL import Image from io import BytesIO import logging +from app.models.schp.mask import extract_color_region_simple +from app.models.schp.simple_extractor import HumanParsingModel, process_single_image, get_color_by_label + + class FeatureExtractor: __logger = logging.getLogger(__name__) @@ -14,6 +20,8 @@ class FeatureExtractor: device = "cpu" self.model, self.preprocess = self.init_model(device, model_name) self.device = device + model_path = Path(__file__).parent.absolute() / "../models/schp/checkpoints/exp-schp-201908261155-lip.pth" + self.schp_model = HumanParsingModel(model_path, dataset='lip') @staticmethod def init_model(device="xpu" if torch.xpu.is_available() else "cpu", model_name="ViT-B/32"): @@ -52,7 +60,7 @@ class FeatureExtractor: return new_img - def extract_from_url(self, image_url): + def extract_from_url(self, image_url, part): """ 从URLåŠ è½½å›¾åƒå¹¶æå–特å¾å‘é‡ @@ -71,7 +79,7 @@ class FeatureExtractor: # 将图片数æ®è½¬æ¢ä¸º PIL Image 对象 image = Image.open(BytesIO(response.content)).convert("RGB") - return self.extract_from_image(image) + return self.extract_from_image(image, part) except requests.RequestException as e: self.__logger.error(f"Network error when downloading image from {image_url}: {e}") @@ -80,7 +88,7 @@ class FeatureExtractor: self.__logger.error(f"Error extracting features from URL {image_url}: {e}") return None - def extract_from_image(self, img): + def extract_from_image(self, img, part): """ 从PIL图åƒå¯¹è±¡æå–特å¾å‘é‡ @@ -100,6 +108,12 @@ class FeatureExtractor: # model_name = "ViT-L/14@336px" # model, preprocess = self.init_model(device, model_name) + color = get_color_by_label(part) + + if color: + mask_img = process_single_image(self.schp_model, img) + img = extract_color_region_simple(img, mask_img, color) + try: # 调整图åƒå¤§å°å¹¶æ·»åŠ å¡«å…… image = self.resize_with_padding(img) diff --git a/app/services/image_search.py b/app/services/image_search.py index 0f22947a5b12880eebd761afcb97ddb872b265a4..de41a9b6eeb4b4e644b28da79f0f181dee420596 100644 --- a/app/services/image_search.py +++ b/app/services/image_search.py @@ -7,10 +7,10 @@ class ImageSearch: self.feature_extractor = feature_extractor self.milvus = milvus - def image_to_image_search(self, bucket, image, top_k = 100): + def image_to_image_search(self, bucket, image, part, top_k = 100): try: # æå–查询图åƒçš„ç‰¹å¾ - vector = self.feature_extractor.extract_from_url(image) + vector = self.feature_extractor.extract_from_url(image, part) results = self.milvus.search(bucket, vector, top_k) diff --git a/app/util/__init__.py b/app/util/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/tests/test_schp.py b/tests/test_schp.py new file mode 100644 index 0000000000000000000000000000000000000000..2ac935db0681f28dd0c75e66bf1a0912bf67ab77 --- /dev/null +++ b/tests/test_schp.py @@ -0,0 +1,15 @@ +import unittest +from typing import List + +from pymilvus import FieldSchema, DataType + +from app.models.schp.simple_extractor import get_color_by_label +from app.services.milvus import MilvusClient + + +class TestGetColorByLabel(unittest.TestCase): + def test_get_color_by_label(self): + print(get_color_by_label("Jumpsuits")) + +if __name__ == '__main__': + unittest.main()